The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007015 a(n) = smallest k such that phi(n+k) = phi(k). (Formerly M3212) 33
 1, 4, 3, 8, 5, 24, 5, 13, 9, 20, 7, 48, 13, 16, 13, 26, 17, 52, 19, 37, 21, 44, 13, 96, 25, 34, 27, 32, 13, 124, 17, 52, 33, 41, 19, 104, 35, 52, 37, 65, 25, 123, 17, 73, 39, 92, 41, 183, 35, 76, 39, 68, 53, 156, 35, 64, 57, 116, 41, 248, 61, 73, 61, 104, 65, 144, 67, 82 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sierpiński proved that a solution exists for each n>0. REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840. R. K. Guy, Unsolved Problems Number Theory, Sect. B36 W. Sierpiński, Sur une propriété de la fonction phi(n), Publ. Math. Debrecen, 4 (1956), 184-185. - Jonathan Sondow, Sep 30 2012 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. R. G. Wilson, V, Letter to N. J. A. Sloane, Jul. 1992 MATHEMATICA kphi[n_]:=Module[{k=1}, While[EulerPhi[n+k]!=EulerPhi[k], k++]; k]; Array[kphi, 70] (* Harvey P. Dale, Oct 24 2011 *) PROG (Haskell) import Data.List (elemIndex) import Data.Maybe (fromJust) a007015 n = 1 + (fromJust \$ elemIndex 0 \$ zipWith (-) a000010_list \$ drop n a000010_list) -- Reinhard Zumkeller, Feb 10 2012 (PARI) a(n)=k=1; while(eulerphi(k)!=eulerphi(n+k), k++); k vector(100, n, a(n)) \\ Derek Orr, May 05 2015 CROSSREFS Cf. A000010. Sequence in context: A022998 A082895 A086938 * A354139 A114562 A189042 Adjacent sequences: A007012 A007013 A007014 * A007016 A007017 A007018 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from Jud McCranie, Dec 24 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 05:31 EDT 2023. Contains 361577 sequences. (Running on oeis4.)