login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179186
Numbers n such that phi(n) = phi(n+4), with Euler's totient function phi=A000010.
12
8, 14, 16, 20, 35, 52, 64, 91, 140, 148, 244, 292, 403, 455, 616, 628, 772, 801, 1011, 1024, 1108, 1144, 1252, 1270, 1295, 1456, 1588, 1684, 1820, 1828, 2030, 2164, 2452, 2623, 2644, 2660, 2692, 2932, 3028, 3216, 3321, 3508, 3988, 4264, 4340, 4372, 4612, 4804, 4852, 4948
OFFSET
1,1
COMMENTS
Is there some n > 5 such that phi(n) = phi(n+3)?
None up to 500000. (* Harvey P. Dale, Feb 16 2011 *)
No further solutions to the phi(n) = phi(n+3) problem less than 10^12. On the other hand, this sequence has 267797240 terms under 10^12. - Jud McCranie, Feb 13 2012
No reason is known that would prevent other solutions of phi(n)=phi(n+3), see Graham, Holt, & Pomerance. - Jud McCranie, Jan 03 2013
If a(n) is even then a(n)/2 is in A001494 - see comment at A217139. - Jud McCranie, Dec 31 2012
REFERENCES
S. W. Graham, J. J. Holt, & C. Pomerance, "On the solutions to phi(n)=phi(n+k)", Number Theory in Progress, Proc. Intern. Conf. in Honor of 60th Birthday of A. Schinzel, Poland, 1997. Walter de Gruyter, 1999, pp. 867-82.
LINKS
Jud McCranie, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
F. Firoozbakht, Puzzle 466: phi(n-1)=phi(n)=phi(n+1), in C. Rivera's Primepuzzles.
Kevin Ford, Solutions of phi(n)=phi(n+k) and sigma(n)=sigma(n+k), arXiv:2002.12155 [math.NT], 2020.
MATHEMATICA
Select[Range[5000], EulerPhi[#]==EulerPhi[#+4]&] (* Harvey P. Dale, Feb 16 2011 *)
SequencePosition[EulerPhi[Range[5000]], {x_, _, _, _, x_}][[;; , 1]] (* Harvey P. Dale, Sep 12 2024 *)
PROG
(PARI) {op=vector(N=4); for( n=1, 1e4, if( op[n%N+1]+0==op[n%N+1]=eulerphi(n), print1(n-N, ", ")))}
(Magma) [n: n in [1..5000] | EulerPhi(n) eq EulerPhi(n+4)]; // Vincenzo Librandi, Sep 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jan 05 2011
STATUS
approved