OFFSET
1,1
COMMENTS
Is there some n > 5 such that phi(n) = phi(n+3)?
None up to 500000. (* Harvey P. Dale, Feb 16 2011 *)
No further solutions to the phi(n) = phi(n+3) problem less than 10^12. On the other hand, this sequence has 267797240 terms under 10^12. - Jud McCranie, Feb 13 2012
No reason is known that would prevent other solutions of phi(n)=phi(n+3), see Graham, Holt, & Pomerance. - Jud McCranie, Jan 03 2013
REFERENCES
S. W. Graham, J. J. Holt, & C. Pomerance, "On the solutions to phi(n)=phi(n+k)", Number Theory in Progress, Proc. Intern. Conf. in Honor of 60th Birthday of A. Schinzel, Poland, 1997. Walter de Gruyter, 1999, pp. 867-82.
LINKS
Jud McCranie, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
F. Firoozbakht, Puzzle 466: phi(n-1)=phi(n)=phi(n+1), in C. Rivera's Primepuzzles.
Kevin Ford, Solutions of phi(n)=phi(n+k) and sigma(n)=sigma(n+k), arXiv:2002.12155 [math.NT], 2020.
MATHEMATICA
Select[Range[5000], EulerPhi[#]==EulerPhi[#+4]&] (* Harvey P. Dale, Feb 16 2011 *)
SequencePosition[EulerPhi[Range[5000]], {x_, _, _, _, x_}][[;; , 1]] (* Harvey P. Dale, Sep 12 2024 *)
PROG
(PARI) {op=vector(N=4); for( n=1, 1e4, if( op[n%N+1]+0==op[n%N+1]=eulerphi(n), print1(n-N, ", ")))}
(Magma) [n: n in [1..5000] | EulerPhi(n) eq EulerPhi(n+4)]; // Vincenzo Librandi, Sep 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jan 05 2011
STATUS
approved