OFFSET
1,1
COMMENTS
a(n) is the smallest number s such that sigma(s) divides s^n*tau(s). In short: a(n) is the smallest superharmonic number with index n.
LINKS
Graeme L. Cohen, Superharmonic numbers, Math. Comp., Vol. 78, No. 265 (2009), pp. 421-429.
EXAMPLE
For n = 1, a(1) = 6 because sigma(6) = 12 divides 6^1*tau(6) = 6*4 = 24.
MATHEMATICA
ind[n_] := Module[{d = Denominator[DivisorSigma[0, n]/DivisorSigma[1, n]], m, p, e, en}, m = 0; Do[{p, e} = pe; en = IntegerExponent[n, p]; If[en == 0, m = 0; Break[], m = Max[m, Ceiling[e/en]]], {pe, FactorInteger[d]}]; m]; mx = 14; c = 0; n = 1; v = Table[0, {mx}]; While[c < mx, n++; i = ind[n]; If[i > 0 && i <= mx && v[[i]] == 0, c++; v[[i]] = n]]; v (* Amiram Eldar, Jun 03 2020 *)
PROG
(PARI) isharmonic(val, index) = ((val^index*numdiv(val) % sigma(val)) == 0)
a(n) = {val = 2; ok = 0; until (ok, if (isharmonic(val, n), if (n == 1, ok = 1, indi = 1; while (! isharmonic(val, indi), indi++); if (indi == n, ok = 1); ); ); if (! ok, val++); ); return (val); } \\ Michel Marcus, Jul 24 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Dec 08 2008
EXTENSIONS
a(25)-a(30) from Amiram Eldar, Jun 03 2020
STATUS
approved