OFFSET
0,6
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = A(k, n-k) for the array defined by A(n, k) = Product_{j=1..n} ( j - (1+j)*(k+1) + (k+1)^(j+1) - 1 ) with A(n, 0) = n!.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 4, 6;
1, 1, 5, 44, 24;
1, 1, 6, 90, 1144, 120;
1, 1, 7, 162, 5220, 65208, 720;
1, 1, 8, 266, 18144, 934380, 7824960, 5040;
1, 1, 9, 408, 51604, 8219232, 507368340, 1932765120, 40320;
MATHEMATICA
A[n_, k_]:= If[k==0, n!, k^(-2*n)*Product[j -(1+j)*(k+1) +(k+1)^(j+1), {j, n}] ];
T[n_, k_]:= A[k, n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 04 2022 *)
PROG
(Sage)
def A(n, k): return factorial(n) if (k==0) else (1/k^(2*n))*product( j -(1+j)*(k+1) +(k+1)^(j+1) for j in (1..n) )
def T(n, k): return A(k, n-k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 04 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 04 2022
STATUS
approved