login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156579
Array A(n, k) = Product_{j=1..n} ( j - (1+j)*(k+1) + (k+1)^(j+1) ) with A(n, 0) = n!, read by antidiagonals.
2
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 5, 44, 24, 1, 1, 6, 90, 1144, 120, 1, 1, 7, 162, 5220, 65208, 720, 1, 1, 8, 266, 18144, 934380, 7824960, 5040, 1, 1, 9, 408, 51604, 8219232, 507368340, 1932765120, 40320, 1, 1, 10, 594, 126480, 50313900, 14942563776, 830054604240, 970248090240, 362880
OFFSET
0,6
FORMULA
T(n, k) = A(k, n-k) for the array defined by A(n, k) = Product_{j=1..n} ( j - (1+j)*(k+1) + (k+1)^(j+1) - 1 ) with A(n, 0) = n!.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 4, 6;
1, 1, 5, 44, 24;
1, 1, 6, 90, 1144, 120;
1, 1, 7, 162, 5220, 65208, 720;
1, 1, 8, 266, 18144, 934380, 7824960, 5040;
1, 1, 9, 408, 51604, 8219232, 507368340, 1932765120, 40320;
MATHEMATICA
A[n_, k_]:= If[k==0, n!, k^(-2*n)*Product[j -(1+j)*(k+1) +(k+1)^(j+1), {j, n}] ];
T[n_, k_]:= A[k, n-k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 04 2022 *)
PROG
(Sage)
def A(n, k): return factorial(n) if (k==0) else (1/k^(2*n))*product( j -(1+j)*(k+1) +(k+1)^(j+1) for j in (1..n) )
def T(n, k): return A(k, n-k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 04 2022
CROSSREFS
Cf. A156540.
Sequence in context: A355334 A295259 A255009 * A351790 A322266 A190284
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 04 2022
STATUS
approved