|
|
A156579
|
|
A triangular sequence of the antidiagonal of the backward q squared like factorial: t(n,m)=If[m == 0, n!, Product[Sum[(k - i)*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]].
|
|
0
|
|
|
1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 5, 44, 24, 1, 1, 6, 90, 1144, 120, 1, 1, 7, 162, 5220, 65208, 720, 1, 1, 8, 266, 18144, 934380, 7824960, 5040, 1, 1, 9, 408, 51604, 8219232, 507368340, 1932765120, 40320, 1, 1, 10, 594, 126480, 50313900, 14942563776
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
Row sums are:
{1, 2, 4, 12, 75, 1362, 71319, 8782800, 2448445035, 1815296062122,
5172422493520011,...}.
Reversed polynomials give this sequence.
|
|
LINKS
|
Table of n, a(n) for n=0..51.
|
|
FORMULA
|
t(n,m)=If[m == 0, n!, Product[Sum[(k - i)*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
out_(n,m)=antidiagonal(t(n,m))
|
|
EXAMPLE
|
{1},
{1, 1},
{1, 1, 2},
{1, 1, 4, 6},
{1, 1, 5, 44, 24},
{1, 1, 6, 90, 1144, 120},
{1, 1, 7, 162, 5220, 65208, 720},
{1, 1, 8, 266, 18144, 934380, 7824960, 5040},
{1, 1, 9, 408, 51604, 8219232, 507368340, 1932765120, 40320},
{1, 1, 10, 594, 126480, 50313900, 14942563776, 830054604240, 970248090240, 362880},
{1, 1, 11, 830, 276804, 235885200, 245582145900, 108766921725504, 4080548434443840, 982861315413120, 3628800}
|
|
MATHEMATICA
|
Clear[t, n, m, i, k, a, b];
t[n_, m_] = If[m == 0, n!, Product[Sum[(k - i)*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}];
b = Table[Table[a[[m, n - m + 1]], {m, n, 1, -1}], {n, 1, Length[a]}];
Flatten[%]
|
|
CROSSREFS
|
Sequence in context: A307977 A295259 A255009 * A322266 A190284 A327639
Adjacent sequences: A156576 A156577 A156578 * A156580 A156581 A156582
|
|
KEYWORD
|
nonn,tabl,uned
|
|
AUTHOR
|
Roger L. Bagula, Feb 10 2009
|
|
STATUS
|
approved
|
|
|
|