login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156578
Triangle of coefficients of 1 - (n+1)*x^n + n*x^(n+1), read by rows.
1
0, 1, -2, 1, 1, 0, -3, 2, 1, 0, 0, -4, 3, 1, 0, 0, 0, -5, 4, 1, 0, 0, 0, 0, -6, 5, 1, 0, 0, 0, 0, 0, -7, 6, 1, 0, 0, 0, 0, 0, 0, -8, 7, 1, 0, 0, 0, 0, 0, 0, 0, -9, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, -10, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 10
OFFSET
0,3
FORMULA
T(n, k) = [x^k]( (1-x)^2 * Sum_{j=0..n-1} (j+1)*x^j ).
T(n, k) = [k=0] - (n+1)*[k=n] + n*[k=n+1] for n > 0, with T(0, 0) = 0. - G. C. Greubel, Jan 03 2022
EXAMPLE
Irregular triangle begins as:
0;
1, -2, 1;
1, 0, -3, 2;
1, 0, 0, -4, 3;
1, 0, 0, 0, -5, 4;
1, 0, 0, 0, 0, -6, 5;
1, 0, 0, 0, 0, 0, -7, 6;
1, 0, 0, 0, 0, 0, 0, -8, 7;
1, 0, 0, 0, 0, 0, 0, 0, -9, 8;
1, 0, 0, 0, 0, 0, 0, 0, 0, -10, 9;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 10;
...
MATHEMATICA
T[n_]:= If[n==0, 0, CoefficientList[1 -(n+1)*x^n +n*x^(n+1), x]];
Table[T[n], {n, 0, 15}]//Flatten (* modified by G. C. Greubel, Jan 03 2022 *)
PROG
(Sage) [0]+flatten([[( 1 -(n+1)*x^n +n*x^(n+1) ).series(x, n+2).list()[k] for k in (0..n+1)] for n in (1..12)]) # G. C. Greubel, Jan 03 2022
CROSSREFS
Sequence in context: A340011 A055168 A085144 * A171846 A375536 A097230
KEYWORD
sign,tabf,less
AUTHOR
Roger L. Bagula, Feb 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 03 2022
STATUS
approved