login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185946 Exponential Riordan array (e^(x), x*A000108(x)). 2
1, 1, 1, 1, 4, 1, 1, 21, 9, 1, 1, 184, 90, 16, 1, 1, 2425, 1210, 250, 25, 1, 1, 42396, 21195, 4640, 555, 36, 1, 1, 916909, 458451, 103355, 13475, 1071, 49, 1, 1, 23569456, 11784724, 2705696, 370790, 32816, 1876, 64, 1, 1, 701312049, 350656020, 81531156, 11544246, 1091286, 70644, 3060, 81, 1, 1, 23697421300, 11848710645, 2780716800, 402965850, 39827592, 2789850, 138720, 4725, 100, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.

FORMULA

R(n,k,m) = (n!/(k-1)!) * Sum_{i=0..(n-k)} (m^i/i!)*binomial(2*(n-i)-k-1,n-i-1)/(n-i), k>0, m=1, R(n,0,1) = 1.

EXAMPLE

Array begins

  1;

  1,      1;

  1,      4,      1;

  1,     21,      9,      1;

  1,    184,     90,     16,      1;

  1,   2425,   1210,    250,     25,      1;

  1,  42396,  21195,   4640,    555,     36,      1;

  1, 916909, 458451, 103355,  13475,   1071,     49,      1;

MATHEMATICA

r[n_, k_, m_] := n!/(k-1)!* Sum[m^i/i!*Binomial[2*(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]; r[n_, 0, m_] = 1; Table[r[n, k, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 14 2013, after Vladimir Kruchinin *)

CROSSREFS

Cf. A000108.

Sequence in context: A156586 A181544 A154283 * A015113 A016519 A113716

Adjacent sequences:  A185943 A185944 A185945 * A185947 A185948 A185949

KEYWORD

nonn,tabl

AUTHOR

Vladimir Kruchinin, Feb 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 06:37 EST 2020. Contains 331033 sequences. (Running on oeis4.)