login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185948
Exponential Riordan array (e^(mx),x*A000108(x)), m=3.
1
1, 3, 1, 9, 8, 1, 27, 57, 15, 1, 81, 480, 186, 24, 1, 243, 5505, 2550, 450, 35, 1, 729, 87048, 42795, 8760, 915, 48, 1, 2187, 1780569, 887733, 194355, 23625, 1659, 63, 1, 6561, 44326656, 22154580, 5010768, 660870, 54432, 2772, 80, 1, 19683, 1291851585, 645896268, 148808772, 20586258, 1862406, 112140, 4356, 99, 1, 59049, 43011249480, 21505526325, 5015422800, 715608810, 68717376, 4590810, 212400, 6525, 120, 1
OFFSET
0,2
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2013.
FORMULA
R(n,k,m) = (n!/(k-1)!) * Sum_{i=0..(n-k)} (m^i/i!)*binomial(2*(n-i)-k-1,n-i-1)/(n-i), k>0, m=3, R(n,0,1)=3^n.
EXAMPLE
[1]
[3,1]
[9,8,1]
[27,57,15,1]
[81,480,186,24,1]
[243,5505,2550,450,35,1]
[729,87048,42795,8760,915,48,1]
[2187,1780569,887733,194355,23625,1659,63,1]
MATHEMATICA
R[n_, k_, m_] := (n!/(k - 1)!)*Sum[m^i/i!*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; R[n_, 0, m_] = 3^n; Table[R[n, k, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 23 2017 *)
CROSSREFS
Sequence in context: A136320 A201840 A114195 * A016601 A193031 A078416
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 07 2011
STATUS
approved