OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = a(n-1) + 8*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: ( 1-5*x-4*x^2 ) / (x-1)^3. - R. J. Mathar, Feb 10 2011
E.g.f.: (4*x^2 + 3*x - 1)*exp(x). - G. C. Greubel, Jul 23 2017
EXAMPLE
11--12--13--14--15
| |
10 1---2---3 16
| | | |
9 0-(-1) 4 17
| | |
8---7---6---5 18
MAPLE
MATHEMATICA
Table[4n^2-n-1, {n, 0, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {-1, 2, 13}, 60] (* Harvey P. Dale, May 22 2015 *)
PROG
(Magma)[-1-n+4*n^2: n in [0..80]]; // Vincenzo Librandi, Feb 08 2011
(PARI) a(n)=4*n^2-n-1 \\ Charles R Greathouse IV, Dec 21 2011
(Haskell)
a185950 n = (4 * n - 1) * n - 1 -- Reinhard Zumkeller, Aug 14 2013
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Feb 07 2011
STATUS
approved