login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185950
a(n) = 4*n^2 - n - 1.
3
-1, 2, 13, 32, 59, 94, 137, 188, 247, 314, 389, 472, 563, 662, 769, 884, 1007, 1138, 1277, 1424, 1579, 1742, 1913, 2092, 2279, 2474, 2677, 2888, 3107, 3334, 3569, 3812, 4063, 4322, 4589, 4864, 5147, 5438, 5737, 6044, 6359, 6682, 7013, 7352, 7699, 8054, 8417, 8788, 9167, 9554, 9949, 10352, 10763, 11182, 11609
OFFSET
0,2
COMMENTS
Write the sequence A023443 in a clockwise spiral. a(n) is on the y-axis.
a(n) mod 9 = period 9: repeat [8,2,4,5,5,4,2,8,4] = A182868(n+2) mod 9.
FORMULA
a(n) = A176126(4*n-1) = A054556(n+1) - 2 = A033991(n) - 1.
a(n) = a(n-1) + 8*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: ( 1-5*x-4*x^2 ) / (x-1)^3. - R. J. Mathar, Feb 10 2011
E.g.f.: (4*x^2 + 3*x - 1)*exp(x). - G. C. Greubel, Jul 23 2017
EXAMPLE
11--12--13--14--15
| |
10 1---2---3 16
| | | |
9 0-(-1) 4 17
| | |
8---7---6---5 18
MAPLE
A185950:=n->4*n^2-n-1: seq(A185950(n), n=0..100); # Wesley Ivan Hurt, Jan 30 2017
MATHEMATICA
Table[4n^2-n-1, {n, 0, 60}] (* or *) LinearRecurrence[{3, -3, 1}, {-1, 2, 13}, 60] (* Harvey P. Dale, May 22 2015 *)
PROG
(Magma)[-1-n+4*n^2: n in [0..80]]; // Vincenzo Librandi, Feb 08 2011
(PARI) a(n)=4*n^2-n-1 \\ Charles R Greathouse IV, Dec 21 2011
(Haskell)
a185950 n = (4 * n - 1) * n - 1 -- Reinhard Zumkeller, Aug 14 2013
CROSSREFS
Sequence in context: A106959 A285096 A177455 * A084828 A100512 A051474
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Feb 07 2011
STATUS
approved