login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176126
Numerator of -A127276(n)/A001788(n).
7
-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, 38, 89, 103, 59, 67, 151, 169, 94, 104, 229, 251, 137, 149, 323, 349, 188, 202, 433, 463, 247, 263, 559, 593, 314, 332, 701, 739, 389, 409, 859, 901, 472, 494, 1033, 1079, 563, 587, 1223, 1273, 662, 688, 1429, 1483, 769, 797, 1651, 1709, 884, 914, 1889, 1951, 1007, 1039, 2143, 2209, 1138, 1172, 2413, 2483, 1277, 1313, 2699, 2773, 1424, 1462, 3001, 3079, 1579
OFFSET
0,4
COMMENTS
The sequence of fractions starts -1/0, -1/1, 1/3, 2/3, 4/5, 13/15, 19/21, 13/14, 17/18, 43/45, 53/55, 32/33, 38/39, ...
The denominators are apparently A064038(n+1) = A061041(4+8*n) (i.e., specified as numerators in A061041).
The difference between denominator and numerator is A014695(n), n > 0.
FORMULA
Conjecture: a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9) with g.f. (x^4-x^3+3*x^2-x+1)*(x^4-x^3-2*x^2-x+1) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 12 2010
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12).
MAPLE
A001788 := proc(n) n*(n+1)*2^(n-2) ; end proc:
A127276 := proc(n) 2^n-A001788(n) ; end proc:
A176126 := proc(n) if n = 0 then -1 else 2^n/A001788(n)-1 ; numer(-%) ; end if; end proc:
seq(A176126(n), n=0..40) ;
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Paul Curtz, Dec 07 2010
STATUS
approved