login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291901
Numbers n such that the sum of sums of elements of subsets of divisors of n is a perfect number (A000396).
2
2, 4, 13, 16, 64, 4096, 65536, 262144, 3145341, 932181397, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864, 75603657215035519123837860069507929970384679
OFFSET
1,1
COMMENTS
Numbers n such that A229335(n) is in the sequence of perfect numbers, A000396.
Corresponding values of perfect numbers: 6, 28, 28, 496, 8128, 33550336, 8589869056, 137438691328, 33550336, ...
All even superperfect numbers A061652(n) are terms in this sequence.
Primes q of the form 2^(p-2) * (2^p - 1) - 1 where p is a Mersenne exponent (A000043) are terms: 2, 13, ...
LINKS
EXAMPLE
Divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; sum of sums of elements of subsets = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 (perfect number).
sigma(16) * 2^(tau(16) - 1) = 31 * 16 = 496 (perfect number).
MAPLE
isA000396 := proc(n)
numtheory[sigma](n)=2*n ;
simplify(%) ;
end proc:
for n from 1 do
if isA000396(A229335(n)) then
print(n);
end if;
end do: # R. J. Mathar, Nov 10 2017
MATHEMATICA
Select[Range[2^20], DivisorSigma[1, DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)] == 2 (DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)) &] (* Michael De Vlieger, Nov 02 2017 *)
PROG
(Magma) [n: n in [1..10^6] | SumOfDivisors(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1))) eq 2*(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1)))];
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 02 2017
EXTENSIONS
Terms a(10) onward added by Max Alekseyev, Sep 18 2024
STATUS
approved