login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that the sum of sums of elements of subsets of divisors of n is a perfect number (A000396).
2

%I #26 Sep 22 2024 10:54:16

%S 2,4,13,16,64,4096,65536,262144,3145341,932181397,1073741824,

%T 1152921504606846976,309485009821345068724781056,

%U 81129638414606681695789005144064,85070591730234615865843651857942052864,75603657215035519123837860069507929970384679

%N Numbers n such that the sum of sums of elements of subsets of divisors of n is a perfect number (A000396).

%C Numbers n such that A229335(n) is in the sequence of perfect numbers, A000396.

%C Corresponding values of perfect numbers: 6, 28, 28, 496, 8128, 33550336, 8589869056, 137438691328, 33550336, ...

%C All even superperfect numbers A061652(n) are terms in this sequence.

%C Primes q of the form 2^(p-2) * (2^p - 1) - 1 where p is a Mersenne exponent (A000043) are terms: 2, 13, ...

%H Max Alekseyev, <a href="/A291901/b291901.txt">Table of n, a(n) for n = 1..71</a>

%e Divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; sum of sums of elements of subsets = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 (perfect number).

%e sigma(16) * 2^(tau(16) - 1) = 31 * 16 = 496 (perfect number).

%p isA000396 := proc(n)

%p numtheory[sigma](n)=2*n ;

%p simplify(%) ;

%p end proc:

%p for n from 1 do

%p if isA000396(A229335(n)) then

%p print(n);

%p end if;

%p end do: # _R. J. Mathar_, Nov 10 2017

%t Select[Range[2^20], DivisorSigma[1, DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)] == 2 (DivisorSigma[1, #] 2^(DivisorSigma[0, #] - 1)) &] (* _Michael De Vlieger_, Nov 02 2017 *)

%o (Magma) [n: n in [1..10^6] | SumOfDivisors(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1))) eq 2*(SumOfDivisors(n)* (2^(NumberOfDivisors(n)-1)))];

%Y Cf. A000043, A000396, A061652, A090748, A229335.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Nov 02 2017

%E Terms a(10) onward added by _Max Alekseyev_, Sep 18 2024