login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A014695
Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.
19
1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1
OFFSET
0,2
COMMENTS
From Klaus Brockhaus, May 14 2010: (Start)
Periodic sequence: Repeat 1, 2, 2, 1.
a(n) = A130658(n+1).
Continued fraction expansion of (5+sqrt(221))/14.
Decimal expansion of 37/303. (End)
LINKS
FORMULA
G.f.: (1+x+x^2)/((1-x)*(1+x^2)) = (1+2*x+2*x^2+x^3)/(1-x^4).
a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))/2. - Jaume Oliver Lafont, Nov 28 2009
a(n) = (6-(1+i)*i^n-(1-i)*(-i)^n)/4 where i = sqrt(-1). - Klaus Brockhaus, May 14 2010
a(n) = denominator of Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Aug 09 2012
MATHEMATICA
Table[Denominator[n*(n + 1)/4], {n, 0, 104}] (* Arkadiusz Wesolowski, Aug 09 2012 *)
LinearRecurrence[{1, -1, 1}, {1, 2, 2}, 120] (* Harvey P. Dale, Jan 19 2020 *)
PROG
(PARI) x='x+O('x^100); Vec((1+2*x+2*x^2+x^3)/(1-x^4)) \\ Altug Alkan, Dec 24 2015
(Python)
def A014695(n): return (1, 2, 2, 1)[n&3] # Chai Wah Wu, Apr 17 2023
CROSSREFS
Denominators for the sequence whose numerators are A064038.
Cf. A130658, A177841. - Klaus Brockhaus, May 14 2010
Sequence in context: A073783 A134430 A130658 * A211263 A303827 A323116
KEYWORD
easy,nonn
EXTENSIONS
More terms from Klaus Brockhaus, May 14 2010
STATUS
approved