login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014695
Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.
19
1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1
OFFSET
0,2
COMMENTS
From Klaus Brockhaus, May 14 2010: (Start)
Periodic sequence: Repeat 1, 2, 2, 1.
a(n) = A130658(n+1).
Continued fraction expansion of (5+sqrt(221))/14.
Decimal expansion of 37/303. (End)
LINKS
FORMULA
G.f.: (1+x+x^2)/((1-x)*(1+x^2)) = (1+2*x+2*x^2+x^3)/(1-x^4).
a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))/2. - Jaume Oliver Lafont, Nov 28 2009
a(n) = (6-(1+i)*i^n-(1-i)*(-i)^n)/4 where i = sqrt(-1). - Klaus Brockhaus, May 14 2010
a(n) = denominator of Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Aug 09 2012
MATHEMATICA
Table[Denominator[n*(n + 1)/4], {n, 0, 104}] (* Arkadiusz Wesolowski, Aug 09 2012 *)
LinearRecurrence[{1, -1, 1}, {1, 2, 2}, 120] (* Harvey P. Dale, Jan 19 2020 *)
PROG
(PARI) x='x+O('x^100); Vec((1+2*x+2*x^2+x^3)/(1-x^4)) \\ Altug Alkan, Dec 24 2015
(Python)
def A014695(n): return (1, 2, 2, 1)[n&3] # Chai Wah Wu, Apr 17 2023
CROSSREFS
Denominators for the sequence whose numerators are A064038.
Cf. A130658, A177841. - Klaus Brockhaus, May 14 2010
Sequence in context: A073783 A134430 A130658 * A211263 A303827 A323116
KEYWORD
easy,nonn
EXTENSIONS
More terms from Klaus Brockhaus, May 14 2010
STATUS
approved