login
A014696
Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of universal W-group W(3).
0
1, 3, 14, 30, 77, 138, 273, 438, 748, 1113, 1729, 2436, 3542, 4788, 6630, 8676, 11571, 14751, 19096, 23826, 30107, 36894, 45695, 55146, 67158, 79989, 96019, 113064, 134044, 156264, 183260, 211752, 245973, 281979, 324786, 369702, 422617, 478002
OFFSET
0,2
FORMULA
G.f.: (1+x+5x^2+x^3+x^4)/((1-x)^2*(1-x^2)^4). a(n)=-a(-6-n).
MAPLE
(x^4+x^3+5*x^2+x+1)/(x-1)^2/(-1+x^2)^4;
MATHEMATICA
LinearRecurrence[{2, 3, -8, -2, 12, -2, -8, 3, 2, -1}, {1, 3, 14, 30, 77, 138, 273, 438, 748, 1113}, 40] (* Harvey P. Dale, Sep 24 2017 *)
PROG
(PARI) a(n)=n+=3; n*((18*n^4-70*n^2+97)-(50*n^2-95)*(-1)^n)/3840
CROSSREFS
Sequence in context: A256053 A354041 A031049 * A235137 A197944 A071396
KEYWORD
nonn,easy
AUTHOR
Alejandro Adem (adem(AT)math.wisc.edu)
STATUS
approved