login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.
19

%I #46 Apr 17 2023 10:33:59

%S 1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,

%T 2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,

%U 1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1

%N Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.

%C From _Klaus Brockhaus_, May 14 2010: (Start)

%C Periodic sequence: Repeat 1, 2, 2, 1.

%C a(n) = A130658(n+1).

%C Continued fraction expansion of (5+sqrt(221))/14.

%C Decimal expansion of 37/303. (End)

%H A. Adem, <a href="http://www.ams.org/notices/199707/adem.pdf">Recent developments in the cohomology of finite groups</a>, Notices Amer. Math. Soc., 44 (1997), 806-812.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a>

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1).

%F G.f.: (1+x+x^2)/((1-x)*(1+x^2)) = (1+2*x+2*x^2+x^3)/(1-x^4).

%F a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))/2. - _Jaume Oliver Lafont_, Nov 28 2009

%F a(n) = (6-(1+i)*i^n-(1-i)*(-i)^n)/4 where i = sqrt(-1). - _Klaus Brockhaus_, May 14 2010

%F a(n) = denominator of Sum_{k=0..n} k/2. - _Arkadiusz Wesolowski_, Aug 09 2012

%t Table[Denominator[n*(n + 1)/4], {n, 0, 104}] (* _Arkadiusz Wesolowski_, Aug 09 2012 *)

%t LinearRecurrence[{1,-1,1},{1,2,2},120] (* _Harvey P. Dale_, Jan 19 2020 *)

%o (PARI) x='x+O('x^100); Vec((1+2*x+2*x^2+x^3)/(1-x^4)) \\ _Altug Alkan_, Dec 24 2015

%o (Python)

%o def A014695(n): return (1,2,2,1)[n&3] # _Chai Wah Wu_, Apr 17 2023

%Y Denominators for the sequence whose numerators are A064038.

%Y Cf. A130658, A177841. - _Klaus Brockhaus_, May 14 2010

%K easy,nonn

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Klaus Brockhaus_, May 14 2010