Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Sep 08 2022 08:45:55
%S -1,2,13,32,59,94,137,188,247,314,389,472,563,662,769,884,1007,1138,
%T 1277,1424,1579,1742,1913,2092,2279,2474,2677,2888,3107,3334,3569,
%U 3812,4063,4322,4589,4864,5147,5438,5737,6044,6359,6682,7013,7352,7699,8054,8417,8788,9167,9554,9949,10352,10763,11182,11609
%N a(n) = 4*n^2 - n - 1.
%C Write the sequence A023443 in a clockwise spiral. a(n) is on the y-axis.
%C a(n) mod 9 = period 9: repeat [8,2,4,5,5,4,2,8,4] = A182868(n+2) mod 9.
%H G. C. Greubel, <a href="/A185950/b185950.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = A176126(4*n-1) = A054556(n+1) - 2 = A033991(n) - 1.
%F a(n) = a(n-1) + 8*n - 5.
%F a(n) = 2*a(n-1) - a(n-2) + 8.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F G.f.: ( 1-5*x-4*x^2 ) / (x-1)^3. - _R. J. Mathar_, Feb 10 2011
%F E.g.f.: (4*x^2 + 3*x - 1)*exp(x). - _G. C. Greubel_, Jul 23 2017
%e 11--12--13--14--15
%e | |
%e 10 1---2---3 16
%e | | | |
%e 9 0-(-1) 4 17
%e | | |
%e 8---7---6---5 18
%p A185950:=n->4*n^2-n-1: seq(A185950(n), n=0..100); # _Wesley Ivan Hurt_, Jan 30 2017
%t Table[4n^2-n-1,{n,0,60}] (* or *) LinearRecurrence[{3,-3,1},{-1,2,13},60] (* _Harvey P. Dale_, May 22 2015 *)
%o (Magma)[-1-n+4*n^2: n in [0..80]]; // _Vincenzo Librandi_, Feb 08 2011
%o (PARI) a(n)=4*n^2-n-1 \\ _Charles R Greathouse IV_, Dec 21 2011
%o (Haskell)
%o a185950 n = (4 * n - 1) * n - 1 -- _Reinhard Zumkeller_, Aug 14 2013
%Y Cf. A033951, A182868.
%K sign,easy
%O 0,2
%A _Paul Curtz_, Feb 07 2011