login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185951
Exponential Riordan array (1, x*cosh(x)).
1
1, 0, 1, 3, 0, 1, 0, 12, 0, 1, 5, 0, 30, 0, 1, 0, 120, 0, 60, 0, 1, 7, 0, 735, 0, 105, 0, 1, 0, 896, 0, 2800, 0, 168, 0, 1, 9, 0, 15372, 0, 8190, 0, 252, 0, 1, 0, 5760, 0, 114240, 0, 20160, 0, 360, 0, 1, 11, 0, 270765, 0, 556710, 0, 43890, 0, 495, 0, 1, 0, 33792, 0, 4118400, 0, 2084544, 0, 87120, 0, 660, 0, 1
OFFSET
1,4
COMMENTS
The column k=0 of the array (which contains T(0,0)=1 and otherwise zero) is not included in the triangle.
Also the Bell transform of the sequence "a(n) = n+1 if n is even else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
T(n,k) = binomial(n,k)/(2^k) * Sum_{i=0..k} binomial(k,i) *(k-2*i)^(n-k), n > k; T(n,n) = 1.
EXAMPLE
Array begins
1,
0, 1,
3, 0, 1,
0, 12, 0, 1,
5, 0, 30, 0, 1,
0, 120, 0, 60, 0, 1,
7, 0, 735, 0, 105, 0, 1,
0, 896, 0, 2800, 0, 168, 0, 1,
9, 0, 15372, 0, 8190, 0, 252, 0, 1,
0, 5760, 0, 114240, 0, 20160, 0, 360, 0, 1,
11, 0, 270765, 0, 556710, 0, 43890, 0, 495, 0, 1,
0, 33792, 0, 4118400, 0, 2084544, 0, 87120, 0, 660, 0, 1.
MAPLE
A185951 := proc(n, k)
if n =k then
1;
else
binomial(n, k)/2^k * add( binomial(k, i)*(k-2*i)^(n-k), i=0..k) ;
end if;
end proc: # R. J. Mathar, Feb 22 2011
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> `if`(n::even, n+1, 0), 10); # Peter Luschny, Jan 29 2016
MATHEMATICA
t[n_, k_] := Binomial[n, k]/(2^k)* Sum[ Binomial[k, i]*(k-2*i)^(n-k), {i, 0, k}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 14 2013, from formula *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, If[EvenQ[n], n + 1, 0]], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
CROSSREFS
Sequence in context: A378061 A319234 A210473 * A188832 A279514 A094675
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 11 2011
STATUS
approved