The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185951 Exponential Riordan array (1, x*cosh(x)). 1
1, 0, 1, 3, 0, 1, 0, 12, 0, 1, 5, 0, 30, 0, 1, 0, 120, 0, 60, 0, 1, 7, 0, 735, 0, 105, 0, 1, 0, 896, 0, 2800, 0, 168, 0, 1, 9, 0, 15372, 0, 8190, 0, 252, 0, 1, 0, 5760, 0, 114240, 0, 20160, 0, 360, 0, 1, 11, 0, 270765, 0, 556710, 0, 43890, 0, 495, 0, 1, 0, 33792, 0, 4118400, 0, 2084544, 0, 87120, 0, 660, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
The column k=0 of the array (which contains T(0,0)=1 and otherwise zero) is not included in the triangle.
Also the Bell transform of the sequence "a(n) = n+1 if n is even else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
T(n,k) = binomial(n,k)/(2^k) * Sum_{i=0..k} binomial(k,i) *(k-2*i)^(n-k), n > k; T(n,n) = 1.
EXAMPLE
Array begins
1,
0, 1,
3, 0, 1,
0, 12, 0, 1,
5, 0, 30, 0, 1,
0, 120, 0, 60, 0, 1,
7, 0, 735, 0, 105, 0, 1,
0, 896, 0, 2800, 0, 168, 0, 1,
9, 0, 15372, 0, 8190, 0, 252, 0, 1,
0, 5760, 0, 114240, 0, 20160, 0, 360, 0, 1,
11, 0, 270765, 0, 556710, 0, 43890, 0, 495, 0, 1,
0, 33792, 0, 4118400, 0, 2084544, 0, 87120, 0, 660, 0, 1.
MAPLE
A185951 := proc(n, k)
if n =k then
1;
else
binomial(n, k)/2^k * add( binomial(k, i)*(k-2*i)^(n-k), i=0..k) ;
end if;
end proc: # R. J. Mathar, Feb 22 2011
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> `if`(n::even, n+1, 0), 10); # Peter Luschny, Jan 29 2016
MATHEMATICA
t[n_, k_] := Binomial[n, k]/(2^k)* Sum[ Binomial[k, i]*(k-2*i)^(n-k), {i, 0, k}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 14 2013, from formula *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, If[EvenQ[n], n + 1, 0]], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
CROSSREFS
Sequence in context: A132884 A319234 A210473 * A188832 A279514 A094675
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 11 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:32 EDT 2024. Contains 372664 sequences. (Running on oeis4.)