Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 22 2019 22:44:11
%S 1,0,1,3,0,1,0,12,0,1,5,0,30,0,1,0,120,0,60,0,1,7,0,735,0,105,0,1,0,
%T 896,0,2800,0,168,0,1,9,0,15372,0,8190,0,252,0,1,0,5760,0,114240,0,
%U 20160,0,360,0,1,11,0,270765,0,556710,0,43890,0,495,0,1,0,33792,0,4118400,0,2084544,0,87120,0,660,0,1
%N Exponential Riordan array (1, x*cosh(x)).
%C The column k=0 of the array (which contains T(0,0)=1 and otherwise zero) is not included in the triangle.
%C Also the Bell transform of the sequence "a(n) = n+1 if n is even else 0". For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 29 2016
%H G. C. Greubel, <a href="/A185951/b185951.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties </a>, arXiv:1103.2582 [math.CO], 2013.
%F T(n,k) = binomial(n,k)/(2^k) * Sum_{i=0..k} binomial(k,i) *(k-2*i)^(n-k), n > k; T(n,n) = 1.
%e Array begins
%e 1,
%e 0, 1,
%e 3, 0, 1,
%e 0, 12, 0, 1,
%e 5, 0, 30, 0, 1,
%e 0, 120, 0, 60, 0, 1,
%e 7, 0, 735, 0, 105, 0, 1,
%e 0, 896, 0, 2800, 0, 168, 0, 1,
%e 9, 0, 15372, 0, 8190, 0, 252, 0, 1,
%e 0, 5760, 0, 114240, 0, 20160, 0, 360, 0, 1,
%e 11, 0, 270765, 0, 556710, 0, 43890, 0, 495, 0, 1,
%e 0, 33792, 0, 4118400, 0, 2084544, 0, 87120, 0, 660, 0, 1.
%p A185951 := proc(n,k)
%p if n =k then
%p 1;
%p else
%p binomial(n,k)/2^k * add( binomial(k,i)*(k-2*i)^(n-k),i=0..k) ;
%p end if;
%p end proc: # _R. J. Mathar_, Feb 22 2011
%p # The function BellMatrix is defined in A264428.
%p # Adds (1,0,0,0, ..) as column 0.
%p BellMatrix(n -> `if`(n::even,n+1,0), 10); # _Peter Luschny_, Jan 29 2016
%t t[n_, k_] := Binomial[n, k]/(2^k)* Sum[ Binomial[k, i]*(k-2*i)^(n-k), {i, 0, k}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 14 2013, from formula *)
%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t B = BellMatrix[Function[n, If[EvenQ[n], n + 1, 0]], rows = 12];
%t Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)
%K nonn,tabl
%O 1,4
%A _Vladimir Kruchinin_, Feb 11 2011