OFFSET
1,1
COMMENTS
Apparently a(n) = A054886(n+2) for n=1..1000. - Georg Fischer, Oct 06 2018
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..4772
Tanya Khovanova, Recursive Sequences
Branko J. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
Branko J. Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
a(k+4) = 3*a(k+2) - a(k).
a(k) = 2*Fibonacci(k+3).
From Philippe Deléham, Nov 19 2008: (Start)
a(n) = a(n-1) + a(n-2), n>2, where a(1)=6, a(2)=10.
G.f.: 2*x*(3+2*x)/(1-x-x^2). (End)
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5 - 4. - Stefano Spezia, Apr 18 2022
MAPLE
NUM := proc(k :: integer) local i, j, n, Fun, Identity, v, A; n := 6; # <- DIMENSION Fun := (i, j)->piecewise(((j=i+1) or (i+j=n+1)), 1, 0); Identity := (i, j)->piecewise(i=j, 1, 0); v := matrix(1, n, 1); A := piecewise(k>1, (matrix(n, n, Fun))^(k-1), k=1, matrix(n, n, Identity)); return(evalm(v&*A&*transpose(v))[1, 1]); end:
MATHEMATICA
CoefficientList[Series[2*(3+2z)/(1-z-z^2), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
PROG
(GAP) a:=[6, 10];; for n in [3..40] do a[n]:=a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Oct 06 2018
(PARI) my(x='x+O('x^40)); Vec(2*x*(3+2*x)/(1-x-x^2)) \\ G. C. Greubel, Feb 02 2019
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x*(3+2*x)/(1-x-x^2) )); // G. C. Greubel, Feb 02 2019
(Sage) (2*(3+2*x)/(1-x-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Branko Malesevic, Feb 29 2004
STATUS
approved