login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007633
Palindromic in bases 3 and 10.
(Formerly M1164)
41
0, 1, 2, 4, 8, 121, 151, 212, 242, 484, 656, 757, 29092, 48884, 74647, 75457, 76267, 92929, 93739, 848848, 1521251, 2985892, 4022204, 4219124, 4251524, 4287824, 5737375, 7875787, 7949497, 27711772, 83155138, 112969211, 123464321
OFFSET
1,3
REFERENCES
J. Meeus, Multibasic palindromes, J. Rec. Math., 18 (No. 3, 1985-1986), 168-173.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Patrick De Geest, Table of n, a(n) for n = 1..65 (terms 1..41 from Robert Israel, terms 42..63 from Robert G. Wilson v)
M. R. Calandra, Integers which are palindromic in both decimal and binary notation, J. Rec. Math., 18 (No. 1, 1985-1986), 47. (Annotated scanned copy) [With scan of J. Rec. Math. 18.3 (1985), pp. 168-173]
MAPLE
ND:= 12; # to get all terms with <= ND decimal digits
rev10:= proc(n) option remember;
rev10(floor(n/10)) + (n mod 10)*10^ilog10(n)
end;
for i from 0 to 9 do rev10(i):= i od:
rev3:= proc(n) option remember;
rev3(floor(n/3)) + (n mod 3)*3^ilog[3](n)
end;
for i from 0 to 2 do rev3(i):= i od:
pali3:= n -> rev3(n) = n;
count:= 1:
A[1]:= 0:
for d from 1 to ND do
d1:= ceil(d/2);
for x from 10^(d1-1) to 10^d1 - 1 do
if d::even then y:= x*10^d1+rev10(x)
else y:= x*10^(d1-1)+rev10(floor(x/10));
fi;
if pali3(y) then
count:= count+1;
A[count]:= y;
fi
od:
od:
seq(A[i], i=1..count); # Robert Israel, Apr 20 2014
MATHEMATICA
Do[ a = IntegerDigits[n]; b = IntegerDigits[n, 3]; If[a == Reverse[a] && b == Reverse[b], Print[n] ], {n, 0, 10^9} ]
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 4], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 30 2004 *)
pal3Q[n_]:=Module[{idn3=IntegerDigits[n, 3]}, idn3==Reverse[idn3]]; Select[ Range[ 0, 1235*10^5], PalindromeQ[#]&&pal3Q[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2019 *)
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 3] &] (* Robert Price, Nov 09 2019 *)
PROG
(Python)
from itertools import chain
from gmpy2 import digits
A007633_list = sorted([n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1, 10**6)), (int(str(x)+str(x)[-2::-1]) for x in range(10**6))) if digits(n, 3) == digits(n, 3)[::-1]]) # Chai Wah Wu, Nov 23 2014
KEYWORD
nonn,base
STATUS
approved