login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007633 Palindromic in bases 3 and 10.
(Formerly M1164)
41
0, 1, 2, 4, 8, 121, 151, 212, 242, 484, 656, 757, 29092, 48884, 74647, 75457, 76267, 92929, 93739, 848848, 1521251, 2985892, 4022204, 4219124, 4251524, 4287824, 5737375, 7875787, 7949497, 27711772, 83155138, 112969211, 123464321 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

J. Meeus, Multibasic palindromes, J. Rec. Math., 18 (No. 3, 1985-1986), 168-173.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Patrick De Geest, Table of n, a(n) for n = 1..65 (first 41 terms from Robert Israel, terms 42..63 from Robert G. Wilson v)

M. R. Calandra, Integers which are palindromic in both decimal and binary notation, J. Rec. Math., 18 (No. 1, 1985-1986), 47. (Annotated scanned copy) [With scan of J. Rec. Math. 18.3 (1985), pp. 168-173]

Patrick De Geest, Palindromic numbers in other bases

MAPLE

ND:= 12; # to get all terms with <= ND decimal digits

rev10:= proc(n) option remember;

rev10(floor(n/10)) + (n mod 10)*10^ilog10(n)

end;

for i from 0 to 9 do rev10(i):= i od:

rev3:= proc(n) option remember;

rev3(floor(n/3)) + (n mod 3)*3^ilog[3](n)

end;

for i from 0 to 2 do rev3(i):= i od:

pali3:= n -> rev3(n) = n;

count:= 1:

A[1]:= 0:

for d from 1 to ND do

d1:= ceil(d/2);

for x from 10^(d1-1) to 10^d1 - 1 do

if d::even then y:= x*10^d1+rev10(x)

else y:= x*10^(d1-1)+rev10(floor(x/10));

fi;

if pali3(y) then

count:= count+1;

A[count]:= y;

fi

od:

od:

seq(A[i], i=1..count); # Robert Israel, Apr 20 2014

MATHEMATICA

Do[ a = IntegerDigits[n]; b = IntegerDigits[n, 3]; If[a == Reverse[a] && b == Reverse[b], Print[n] ], {n, 0, 10^9} ]

NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 4], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 30 2004 *)

pal3Q[n_]:=Module[{idn3=IntegerDigits[n, 3]}, idn3==Reverse[idn3]]; Select[ Range[ 0, 1235*10^5], PalindromeQ[#]&&pal3Q[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2019 *)

Select[Range[0, 10^5],

PalindromeQ[#] && # == IntegerReverse[#, 3] &] (* Robert Price, Nov 09 2019 *)

PROG

(Python)

from itertools import chain

from gmpy2 import digits

A007633_list = sorted([n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1, 10**6)), (int(str(x)+str(x)[-2::-1]) for x in range(10**6))) if digits(n, 3) == digits(n, 3)[::-1]]) # Chai Wah Wu, Nov 23 2014

CROSSREFS

Cf. A007632, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A099165.

Sequence in context: A018694 A129661 A018713 * A018777 A130693 A286523

Adjacent sequences: A007630 A007631 A007632 * A007634 A007635 A007636

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, Mira Bernstein, Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 11:37 EDT 2023. Contains 361443 sequences. (Running on oeis4.)