The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007633 Palindromic in bases 3 and 10. (Formerly M1164) 41
 0, 1, 2, 4, 8, 121, 151, 212, 242, 484, 656, 757, 29092, 48884, 74647, 75457, 76267, 92929, 93739, 848848, 1521251, 2985892, 4022204, 4219124, 4251524, 4287824, 5737375, 7875787, 7949497, 27711772, 83155138, 112969211, 123464321 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES J. Meeus, Multibasic palindromes, J. Rec. Math., 18 (No. 3, 1985-1986), 168-173. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Patrick De Geest, Table of n, a(n) for n = 1..65 (terms 1..41 from Robert Israel, terms 42..63 from Robert G. Wilson v) M. R. Calandra, Integers which are palindromic in both decimal and binary notation, J. Rec. Math., 18 (No. 1, 1985-1986), 47. (Annotated scanned copy) [With scan of J. Rec. Math. 18.3 (1985), pp. 168-173] Patrick De Geest, Palindromic numbers in other bases. MAPLE ND:= 12; # to get all terms with <= ND decimal digits rev10:= proc(n) option remember; rev10(floor(n/10)) + (n mod 10)*10^ilog10(n) end; for i from 0 to 9 do rev10(i):= i od: rev3:= proc(n) option remember; rev3(floor(n/3)) + (n mod 3)*3^ilog[3](n) end; for i from 0 to 2 do rev3(i):= i od: pali3:= n -> rev3(n) = n; count:= 1: A[1]:= 0: for d from 1 to ND do d1:= ceil(d/2); for x from 10^(d1-1) to 10^d1 - 1 do if d::even then y:= x*10^d1+rev10(x) else y:= x*10^(d1-1)+rev10(floor(x/10)); fi; if pali3(y) then count:= count+1; A[count]:= y; fi od: od: seq(A[i], i=1..count); # Robert Israel, Apr 20 2014 MATHEMATICA Do[ a = IntegerDigits[n]; b = IntegerDigits[n, 3]; If[a == Reverse[a] && b == Reverse[b], Print[n] ], {n, 0, 10^9} ] NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 4], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 30 2004 *) pal3Q[n_]:=Module[{idn3=IntegerDigits[n, 3]}, idn3==Reverse[idn3]]; Select[ Range[ 0, 1235*10^5], PalindromeQ[#]&&pal3Q[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2019 *) Select[Range[0, 10^5], PalindromeQ[#] && # == IntegerReverse[#, 3] &] (* Robert Price, Nov 09 2019 *) PROG (Python) from itertools import chain from gmpy2 import digits A007633_list = sorted([n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1, 10**6)), (int(str(x)+str(x)[-2::-1]) for x in range(10**6))) if digits(n, 3) == digits(n, 3)[::-1]]) # Chai Wah Wu, Nov 23 2014 CROSSREFS Cf. A007632, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A099165. Sequence in context: A018694 A129661 A018713 * A018777 A130693 A286523 Adjacent sequences: A007630 A007631 A007632 * A007634 A007635 A007636 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Mira Bernstein, Robert G. Wilson v STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 17:23 EST 2024. Contains 370427 sequences. (Running on oeis4.)