|
|
A029804
|
|
Numbers that are palindromic in bases 8 and 10.
|
|
37
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 9, 121, 292, 333, 373, 414, 585, 3663, 8778, 13131, 13331, 26462, 26662, 30103, 30303, 207702, 628826, 660066, 1496941, 1935391, 1970791, 4198914, 55366355, 130535031, 532898235, 719848917, 799535997, 1820330281
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Intersection of A002113 and A029803. - Michel Marcus, Nov 20 2014
|
|
LINKS
|
Robert G. Wilson v, Table of n, a(n) for n = 1..75
P. De Geest, Palindromic numbers beyond base 10
Rick Regan, Code to generate this sequence
|
|
MATHEMATICA
|
b1=8; b2=10; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 100000}]; lst (* Vincenzo Librandi, Nov 13 2014 *)
|
|
PROG
|
(PARI) isok(n) = (n==0) || ((d10=digits(n, 10)) && (d10==Vecrev(d10)) && (d8=digits(n, 8)) && (d8==Vecrev(d8))); \\ Michel Marcus, Nov 13 2014
(PARI) ispal(n, r) = my(d=digits(n, r)); d==Vecrev(d);
for(n=0, 10^7, if(ispal(n, 10)&&ispal(n, 8), print1(n, ", "))); \\ Joerg Arndt, Nov 22 2014
(MAGMA) [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 8) eq Reverse(Intseq(n, 8))]; // Vincenzo Librandi, Nov 23 2014
(Python)
def palQ8(n): # check if n is a palindrome in base 8
....s = oct(n)[2:]
....return s == s[::-1]
def palQgen10(l): # unordered generator of palindromes of length <= 2*l
....if l > 0:
........yield 0
........for x in range(1, 10**l):
............s = str(x)
............yield int(s+s[-2::-1])
............yield int(s+s[::-1])
A029804_list = sorted([n for n in palQgen10(6) if palQ8(n)])
# Chai Wah Wu, Nov 25 2014
|
|
CROSSREFS
|
Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A099165.
Sequence in context: A048333 A007496 A082274 * A084690 A194963 A072794
Adjacent sequences: A029801 A029802 A029803 * A029805 A029806 A029807
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Patrick De Geest
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, Sep 30 2004
Incorrect Mathematica program deleted by N. J. A. Sloane, Sep 01 2009
Terms 33 through 36 corrected by Rick Regan (exploringbinary(AT)gmail.com), Sep 01 2009
|
|
STATUS
|
approved
|
|
|
|