login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029966
Palindromic in bases 10 and 11.
48
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 232, 343, 454, 565, 676, 787, 898, 909, 26962, 38183, 40504, 49294, 52825, 63936, 75157, 2956592, 2968692, 3262623, 3274723, 3286823, 3298923, 3360633, 3372733, 4348434, 4410144, 4422244, 4581854
OFFSET
1,3
COMMENTS
The first 79 terms all have an odd number of decimal digits. Is there a term with an even number of decimal digits? - Robert Israel, Nov 23 2014
LINKS
Ray Chandler and Robert G. Wilson v, Table of n, a(n) for n = 1..79, a(66)-a(76) from Ray Chandler, Oct 31 2014
MAPLE
N:= 11: # to get all terms with up to N decimal digits
qpali:= proc(k, b) local L; L:= convert(k, base, b); if L = ListTools:-Reverse(L) then k else NULL fi end proc:
digrev:= proc(k, b) local L, n; L:= convert(k, base, b); n:= nops(L); add(L[i]*b^(n-i), i=1..n); end proc:
Res:= $0..9:
for d from 2 to N do
if d::even then
m:= d/2;
Res:= Res, seq(qpali(n*10^m + digrev(n, 10), 11), n=10^(m-1)..10^m-1);
else
m:= (d-1)/2;
Res:= Res, seq(seq(qpali(n*10^(m+1)+y*10^m+digrev(n, 10), 11), y=0..9), n=10^(m-1)..10^m-1);
fi
od:
Res; # Robert Israel, Nov 23 2014
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 12], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 30 2004 *)
b1=10; b2=11; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 11] &] (* Robert Price, Nov 09 2019 *)
PROG
(Magma) [n: n in [0..5000000] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 11) eq Reverse(Intseq(n, 11))]; // Vincenzo Librandi, Nov 23 2014
KEYWORD
nonn,base
STATUS
approved