This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029966 Palindromic in bases 10 and 11. 47

%I

%S 0,1,2,3,4,5,6,7,8,9,232,343,454,565,676,787,898,909,26962,38183,

%T 40504,49294,52825,63936,75157,2956592,2968692,3262623,3274723,

%U 3286823,3298923,3360633,3372733,4348434,4410144,4422244,4581854

%N Palindromic in bases 10 and 11.

%C The first 79 terms all have an odd number of decimal digits. Is there a term with an even number of decimal digits? - _Robert Israel_, Nov 23 2014

%H Ray Chandler and Robert G. Wilson v, <a href="/A029966/b029966.txt">Table of n, a(n) for n = 1..79</a>, a(66)-a(76) from Ray Chandler, Oct 31 2014

%H P. De Geest, <a href="http://www.worldofnumbers.com/nobase10.htm">Palindromic numbers beyond base 10</a>

%p N:= 11: # to get all terms with up to N decimal digits

%p qpali:= proc(k, b) local L; L:= convert(k, base, b); if L = ListTools:-Reverse(L) then k else NULL fi end proc:

%p digrev:= proc(k,b) local L,n; L:= convert(k,base,b); n:= nops(L); add(L[i]*b^(n-i),i=1..n); end proc:

%p Res:= \$0..9:

%p for d from 2 to N do

%p if d::even then

%p m:= d/2;

%p Res:= Res, seq(qpali(n*10^m + digrev(n,10),11), n=10^(m-1)..10^m-1);

%p else

%p m:= (d-1)/2;

%p Res:= Res, seq(seq(qpali(n*10^(m+1)+y*10^m+digrev(n,10),11), y=0..9), n=10^(m-1)..10^m-1);

%p fi

%p od:

%p Res; # _Robert Israel_, Nov 23 2014

%t NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 12], AppendTo[l, a]], {n, 100000}]; l (* _Robert G. Wilson v_, Sep 30 2004 *)

%t b1=10; b2=11; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* _Vincenzo Librandi_, Nov 23 2014 *)

%t Select[Range[0, 10^5],

%t PalindromeQ[#] && # == IntegerReverse[#, 11] &] (* _Robert Price_, Nov 09 2019 *)

%o (MAGMA) [n: n in [0..5000000] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 11) eq Reverse(Intseq(n, 11))]; // _Vincenzo Librandi_, Nov 23 2014

%Y Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029967, A029968, A029969, A029970, A029731, A097855, A099165.

%K nonn,base

%O 1,3

%A _Patrick De Geest_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)