login
A219324
Positive integers n that are equal to the determinant of the circulant matrix formed by the decimal digits of n.
16
1, 2, 3, 4, 5, 6, 7, 8, 9, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 3075, 26027, 26933, 45018, 69781, 80487, 154791, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 80651025, 95738203, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160
OFFSET
1,2
COMMENTS
Belukhov proved that if d is an odd divisor of p-1, then for integers q=(p^d-1)/((p-1)*d) and t such that (p-1)*(d-1)/2 < t < (p-1)*(d+1)/2 and gcd(t,d)=1, the number q*t equals the determinant of the circulant matrix formed by its base-p digits. For this sequence (where p=10), not every term can be obtained in this way.
If you rotate left (or take the absolute value of the determinant), then the sequence contains the following additional terms: 48, 1547, 123823, 289835, 23203827, ... (cf. A219326, A219327). - Robert G. Wilson v, Dec 12 2012
a(58) > 6*10^11. - Giovanni Resta, Dec 14 2012
See also A303260 for a different generalization: n X n circulant determinant having its base n+1 digits equal to a row. - M. F. Hasler, Apr 23 2018
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..57 (first 47 terms from Robert G. Wilson v)
N. I. Belukhov, Solution to Problem 14.7 (in Russian), Matematicheskoe Prosveshchenie 15 (2011), pp. 241-244.
Wikipedia, Circulant matrix
EXAMPLE
| 2 4 7 |
247 = det | 7 2 4 |
| 4 7 2 |
MATHEMATICA
f[n_] := Det[ NestList[ RotateRight@# &, IntegerDigits@ n, Floor[ Log10[n] + 1] - 1]]; k = 1; lst = {}; While[k < 1120000000, a = f@ k; If[a == k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Nov 20 2012 *)
Select[Range[53*10^5], Det[Table[RotateRight[IntegerDigits[#], d], {d, 0, IntegerLength[ #]-1}]]==#&] (* The program generates the first 34 terms of the sequence. To generate more, increase the Range constant, but the program will take a long time to run. *) (* Harvey P. Dale, Jul 05 2021 *)
PROG
(PARI) { isA219324(n) = local(d, m, r); d=eval(Vec(Str(n))); m=#d; r=Mod(x, polcyclo(m)); prod(j=1, m, sum(i=1, m, d[i]*r^((i-1)*j)))==n }
(Python)
from sympy import Matrix
A219324_list = []
for n in range(1, 10**4):
s = [int(d) for d in str(n)]
m = len(s)
if n == Matrix(m, m, lambda i, j: s[(i-j) % m]).det():
A219324_list.append(n) # Chai Wah Wu, Oct 18 2021
CROSSREFS
Cf. A219325 (binary digits), A219326 (digits in reverse order), A219327 (absolute value of determinant), A306853 (permanent).
Cf. A303260.
Sequence in context: A117954 A342952 A029966 * A085134 A229761 A004882
KEYWORD
base,nonn,nice
AUTHOR
Max Alekseyev, Nov 17 2012
STATUS
approved