login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A097855
Numbers palindromic in bases 10 and 17.
37
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 252, 494, 545, 767, 818, 989, 2882, 4554, 61416, 94249, 177771, 256652, 335533, 1388831, 4165614, 8837388, 31744713, 102757201, 103595301, 123616321, 124454421, 207535702, 208373802, 212313212, 229232922
OFFSET
1,3
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..70 (first 67 terms from Ray Chandler)
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 17], AppendTo[l, a]], {n, 40000}]; l (* Robert G. Wilson v, Sep 03 2004 *)
b1=10; b2=17; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 17] &] (* Robert Price, Nov 09 2019 *)
PROG
(Magma) [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 17) eq Reverse(Intseq(n, 17))]; // Vincenzo Librandi, Nov 23 2014
KEYWORD
base,nonn
AUTHOR
Cino Hilliard, Aug 31 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 03 2004
Term 0 prepended by Robert G. Wilson v, Oct 07 2014
STATUS
approved