|
|
A029968
|
|
Palindromic in bases 13 and 10.
|
|
40
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 222, 313, 353, 444, 575, 666, 797, 1111, 6776, 8778, 24542, 25452, 26362, 56265, 311113, 2377732, 2713172, 2832382, 2906092, 8864688, 10122101, 13055031, 20244202, 20944902, 23177132, 23877832
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
MATHEMATICA
|
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 13], AppendTo[l, a]], {n, 100000}]; l (* Robert G. Wilson v, Sep 03 2004 *)
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 13] &] (* Robert Price, Nov 09 2019 *)
|
|
PROG
|
(Python)
from gmpy2 import digits
def palQ(n, b): # check if n is a palindrome in base b
s = digits(n, b)
return s == s[::-1]
def palQgen10(l): # generator of palindromes in base 10 of length <= 2*l
if l > 0:
yield 0
for x in range(1, l+1):
for y in range(10**(x-1), 10**x):
s = str(y)
yield int(s+s[-2::-1])
for y in range(10**(x-1), 10**x):
s = str(y)
yield int(s+s[::-1])
A029968_list = [n for n in palQgen10(9) if palQ(n, 13)]
|
|
CROSSREFS
|
Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029969, A029970, A029731, A097855, A099165.
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|