Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 11 2024 14:41:30
%S 0,1,2,3,4,5,6,7,8,9,11,222,313,353,444,575,666,797,1111,6776,8778,
%T 24542,25452,26362,56265,311113,2377732,2713172,2832382,2906092,
%U 8864688,10122101,13055031,20244202,20944902,23177132,23877832
%N Palindromic in bases 13 and 10.
%H Robert G. Wilson v, <a href="/A029968/b029968.txt">Table of n, a(n) for n = 1..76</a>
%H P. De Geest, <a href="https://www.worldofnumbers.com/nobase10.htm">Palindromic numbers beyond base 10</a>
%t NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 13], AppendTo[l, a]], {n, 100000}]; l (* _Robert G. Wilson v_, Sep 03 2004 *)
%t Select[Range[0, 10^5],
%t PalindromeQ[#] && # == IntegerReverse[#, 13] &] (* _Robert Price_, Nov 09 2019 *)
%o (Python)
%o from gmpy2 import digits
%o def palQ(n,b): # check if n is a palindrome in base b
%o s = digits(n,b)
%o return s == s[::-1]
%o def palQgen10(l): # generator of palindromes in base 10 of length <= 2*l
%o if l > 0:
%o yield 0
%o for x in range(1,l+1):
%o for y in range(10**(x-1),10**x):
%o s = str(y)
%o yield int(s+s[-2::-1])
%o for y in range(10**(x-1),10**x):
%o s = str(y)
%o yield int(s+s[::-1])
%o A029968_list = [n for n in palQgen10(9) if palQ(n,13)]
%o # _Chai Wah Wu_, Dec 01 2014
%Y Cf. A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029969, A029970, A029731, A097855, A099165.
%K nonn,base
%O 1,3
%A _Patrick De Geest_