Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Dec 13 2019 13:03:15
%S 50383,45779,41381,37189,33203,29423,25849,22481,19319,16363,13613,
%T 11069,8731,6599,4673,2953,1439,131,971,1867,2557,3041,3319,3391,3257,
%U 2917,2371,1619,661,503,1873,3449,5231,7219,9413,11813,14419,17231,20249,23473,26903
%N Primes of the form abs(103*n^2 - 4707*n + 50383) in order of increasing nonnegative n.
%C This polynomial is a transformed version of the polynomial P(x) = 103*x^2 + 31*x - 3391 whose absolute value gives 43 distinct primes for -23 <= x <= 19, found by G. W. Fung in 1988. - _Hugo Pfoertner_, Dec 13 2019
%D Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
%H Robert Price, <a href="/A267252/b267252.txt">Table of n, a(n) for n = 1..3885</a>
%H François Dress and Michel Olivier, <a href="https://projecteuclid.org/euclid.em/1047262355">Polynômes prenant des valeurs premières</a>, Experimental Mathematics, Volume 8, Issue 4 (1999), 319-338.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a>
%e 33203 is in this sequence since 103*4^2 - 4707*4 + 50383 = 1648-18828+50383 = 33203 is prime.
%t n = Range[0, 100]; Abs @ Select[103n^2 - 4707n + 50383 , PrimeQ[#] &]
%o (PARI) lista(nn) = for(n=0, nn, if(isprime(p=abs(103*n^2-4707*n+50383)), print1(p, ", "))); \\ _Altug Alkan_, Apr 28 2016, corrected by _Hugo Pfoertner_, Dec 13 2019
%Y Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.
%Y Cf. A271980, A272030, A272074, A272075, A272118, A272159, A271143, A272284, A272323, A267069, A330363.
%K nonn,less
%O 1,1
%A _Robert Price_, Apr 28 2016
%E Title corrected by _Hugo Pfoertner_, Dec 13 2019