login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267251 Decimal expansion of Product_{i>=1} (1-1/prime(i))/(1-1/sqrt(prime(i)*prime(i+1))). 0
6, 7, 2, 9, 3, 3, 8, 8, 1, 7, 9, 8, 5, 9, 7, 7, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..16.

Paul Erdős, Solution to Advanced Problem 4413, American Mathematical Monthly, 59 (1952) 259-261.

EXAMPLE

0.67293388179859770...

From Jon E. Schoenfield, Jan 28 2018: (Start)

Define the partial product y_j = Product_{i=1..PrimePi(j)-1} (1-1/prime(i))/(1-1/sqrt(prime(i)*prime(i+1))); then 2*y_(2^b) - y_(2^(b-1)) converges fairly quickly to lim_{j->inf} y_j = 0.67293388179859770...:

   b           y_(2^b)            2*y_(2^b) - y_(2^(b-1))

  ==   ========================   ========================

   1   1.0000000000000000000...   ------------------------

   2   0.8449489742783178098...   0.6898979485566356196...

   3   0.7310664129192713972...   0.6171838515602249847...

   4   0.7016018086413063157...   0.6721372043633412342...

   5   0.6843047236120372449...   0.6670076385827681741...

   6   0.6785904879742426949...   0.6728762523364481450...

   7   0.6756179719208981466...   0.6726454558675535982...

   8   0.6742838913222028614...   0.6729498107235075762...

   9   0.6735974784100733488...   0.6729110654979438362...

  10   0.6732641297588515055...   0.6729307811076296623...

  11   0.6730990828541563251...   0.6729340359494611447...

  12   0.6730161366254012027...   0.6729331903966460803...

  13   0.6729749724000593392...   0.6729338081747174757...

  14   0.6729544253323538140...   0.6729338782646482887...

  15   0.6729441568308331961...   0.6729338883293125783...

  16   0.6729390172929284098...   0.6729338777550236236...

  17   0.6729364489209538789...   0.6729338805489793480...

  18   0.6729351653593885893...   0.6729338817978232998...

  19   0.6729345235639937111...   0.6729338817685988329...

  20   0.6729342026805519869...   0.6729338817971102627...

  21   0.6729340422395265924...   0.6729338817985011978...

  22   0.6729339620187032430...   0.6729338817978798937...

  23   0.6729339219086747633...   0.6729338817986462835...

  24   0.6729339018535990721...   0.6729338817985233809...

  25   0.6729338918261069776...   0.6729338817986148831...

  26   0.6729338868123465563...   0.6729338817985861350...

  27   0.6729338843054725858...   0.6729338817985986153...

  28   0.6729338830520350245...   0.6729338817985974632...

  29   0.6729338824253162288...   0.6729338817985974332...

  30   0.6729338821119569733...   0.6729338817985977178...

  31   0.6729338819552773332...   0.6729338817985976930...

  32   0.6729338818769375185...   0.6729338817985977038...

  33   0.6729338818377676111...   0.6729338817985977038...

  34   0.6729338818181826575...   0.6729338817985977039...

(End)

MATHEMATICA

Take[First@ RealDigits@ N[Product[(1 - 1/Prime@ i)/(1 - 1/Sqrt[Prime[i] Prime[i + 1]]), {i, 100000}]], 5] (* Michael De Vlieger, Jan 12 2016 *)

CROSSREFS

Cf. A245630, A245636.

Sequence in context: A153971 A308039 A316165 * A259526 A108664 A160155

Adjacent sequences:  A267248 A267249 A267250 * A267252 A267253 A267254

KEYWORD

nonn,cons,more

AUTHOR

Michel Marcus, Jan 12 2016

EXTENSIONS

Three more digits from Jean-François Alcover, Jan 13 2016

Nine more digits from Jon E. Schoenfield, Jan 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 11 14:58 EDT 2021. Contains 342886 sequences. (Running on oeis4.)