login
A378351
Decimal expansion of the surface area of a (small) triakis octahedron with unit shorter edge length.
0
1, 0, 6, 7, 2, 9, 4, 1, 8, 7, 3, 9, 8, 3, 5, 4, 6, 7, 0, 5, 1, 5, 0, 0, 0, 8, 9, 2, 2, 4, 9, 0, 1, 6, 0, 5, 6, 4, 5, 9, 0, 1, 0, 4, 2, 3, 7, 7, 1, 5, 4, 7, 1, 2, 6, 4, 4, 7, 5, 3, 7, 1, 0, 6, 3, 0, 4, 9, 1, 0, 1, 2, 1, 2, 7, 2, 8, 6, 0, 3, 3, 8, 6, 3, 8, 8, 2, 1, 1, 8
OFFSET
2,3
COMMENTS
The (small) triakis octahedron is the dual polyhedron of the truncated cube.
LINKS
Eric Weisstein's World of Mathematics, Small Triakis Octahedron.
Wikipedia, Triakis octahedron.
FORMULA
Equals 3*sqrt(7 + 4*sqrt(2)) = 3*sqrt(7 + A010487).
EXAMPLE
10.672941873983546705150008922490160564590104237715...
MATHEMATICA
First[RealDigits[3*Sqrt[7 + Sqrt[32]], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TriakisOctahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A378352 (volume), A378353 (inradius), A201488 (midradius), A378354 (dihedral angle).
Cf. A377298 (surface area of a truncated cube with unit edge).
Cf. A010487.
Sequence in context: A308039 A316165 A267251 * A259526 A108664 A160155
KEYWORD
nonn,cons,easy,new
AUTHOR
Paolo Xausa, Nov 23 2024
STATUS
approved