login
A378353
Decimal expansion of the inradius of a (small) triakis octahedron with unit shorter edge length.
0
8, 1, 9, 1, 4, 0, 6, 6, 3, 4, 0, 3, 2, 5, 7, 1, 6, 1, 7, 1, 5, 4, 9, 1, 3, 4, 5, 7, 3, 5, 6, 5, 3, 1, 6, 6, 2, 4, 1, 5, 5, 5, 2, 0, 3, 0, 6, 1, 3, 2, 0, 1, 6, 6, 7, 6, 5, 3, 7, 8, 7, 9, 1, 4, 2, 4, 2, 6, 4, 3, 4, 6, 2, 0, 6, 6, 0, 7, 8, 1, 0, 8, 8, 3, 4, 9, 9, 7, 1, 3
OFFSET
0,1
COMMENTS
The (small) triakis octahedron is the dual polyhedron of the truncated cube.
FORMULA
Equals sqrt(23/68 + 4*sqrt(2)/17) = sqrt(23/68 + A010487/17).
EXAMPLE
0.81914066340325716171549134573565316624155520306132...
MATHEMATICA
First[RealDigits[Sqrt[23/68 + Sqrt[32]/17], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TriakisOctahedron", "Inradius"], 10, 100]]
CROSSREFS
Cf. A378351 (surface area), A378352 (volume), A201488 (midradius), A378354 (dihedral angle).
Cf. A010487.
Sequence in context: A141228 A133820 A258718 * A019864 A230151 A308043
KEYWORD
nonn,cons,easy,new
AUTHOR
Paolo Xausa, Nov 23 2024
STATUS
approved