login
Decimal expansion of the inradius of a (small) triakis octahedron with unit shorter edge length.
0

%I #4 Nov 28 2024 11:11:10

%S 8,1,9,1,4,0,6,6,3,4,0,3,2,5,7,1,6,1,7,1,5,4,9,1,3,4,5,7,3,5,6,5,3,1,

%T 6,6,2,4,1,5,5,5,2,0,3,0,6,1,3,2,0,1,6,6,7,6,5,3,7,8,7,9,1,4,2,4,2,6,

%U 4,3,4,6,2,0,6,6,0,7,8,1,0,8,8,3,4,9,9,7,1,3

%N Decimal expansion of the inradius of a (small) triakis octahedron with unit shorter edge length.

%C The (small) triakis octahedron is the dual polyhedron of the truncated cube.

%F Equals sqrt(23/68 + 4*sqrt(2)/17) = sqrt(23/68 + A010487/17).

%e 0.81914066340325716171549134573565316624155520306132...

%t First[RealDigits[Sqrt[23/68 + Sqrt[32]/17], 10, 100]] (* or *)

%t First[RealDigits[PolyhedronData["TriakisOctahedron", "Inradius"], 10, 100]]

%Y Cf. A378351 (surface area), A378352 (volume), A201488 (midradius), A378354 (dihedral angle).

%Y Cf. A010487.

%K nonn,cons,easy,new

%O 0,1

%A _Paolo Xausa_, Nov 23 2024