login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272159 Numbers k such that abs(8*k^2 - 488*k + 7243) is prime. 13
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 71 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

From Robert Israel, Apr 21 2016: (Start)

n such that either n <= 61 or 8n^2 - 488n + 7243 is prime.

The first number not in the sequence is 62. (End)

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Prime-Generating Polynomials

EXAMPLE

4 is in this sequence since 8*4^2 - 488*4 + 7243 = 128-1952+7243 = 5419 is prime.

MAPLE

select(n -> isprime(abs(8*n^2 - 488*n + 7243)), [$0..1000]); # Robert Israel, Apr 21 2016

MATHEMATICA

Select[Range[0, 100], PrimeQ[8#^2 - 488# + 7243] &]

PROG

(PARI) lista(nn) = for(n=0, nn, if(isprime(abs(8*n^2-488*n+7243)), print1(n, ", "))); \\ Altug Alkan, Apr 21 2016

CROSSREFS

Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.

Cf. A271980, A272074, A272075, A272160.

Sequence in context: A296876 A144972 A166719 * A227981 A085736 A265711

Adjacent sequences:  A272156 A272157 A272158 * A272160 A272161 A272162

KEYWORD

nonn

AUTHOR

Robert Price, Apr 21 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 18:04 EDT 2021. Contains 342852 sequences. (Running on oeis4.)