

A272159


Numbers k such that abs(8*k^2  488*k + 7243) is prime.


13



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 71
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

From Robert Israel, Apr 21 2016: (Start)
n such that either n <= 61 or 8n^2  488n + 7243 is prime.
The first number not in the sequence is 62. (End)


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, PrimeGenerating Polynomials


EXAMPLE

4 is in this sequence since 8*4^2  488*4 + 7243 = 1281952+7243 = 5419 is prime.


MAPLE

select(n > isprime(abs(8*n^2  488*n + 7243)), [$0..1000]); # Robert Israel, Apr 21 2016


MATHEMATICA

Select[Range[0, 100], PrimeQ[8#^2  488# + 7243] &]


PROG

(PARI) lista(nn) = for(n=0, nn, if(isprime(abs(8*n^2488*n+7243)), print1(n, ", "))); \\ Altug Alkan, Apr 21 2016


CROSSREFS

Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.
Cf. A271980, A272074, A272075, A272160.
Sequence in context: A296876 A144972 A166719 * A227981 A085736 A265711
Adjacent sequences: A272156 A272157 A272158 * A272160 A272161 A272162


KEYWORD

nonn


AUTHOR

Robert Price, Apr 21 2016


STATUS

approved



