login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144972
Power-6-free numbers: numbers whose exponents in their prime factorization are all less than 6.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73
OFFSET
1,2
COMMENTS
Superset of A005117 and A067259. The first numbers not in the sequence are 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 729 etc. [R. J. Mathar, Oct 11 2008]
This sequence has an asymptotic density of about 0.98270. - David A. Corneth, Nov 05 2017
From Amiram Eldar, Mar 20 2021: (Start)
The asymptotic density of this sequence is 1/zeta(6) = 1/A013664 = 945/Pi^6 = 0.9829525922...
The Schnirelmann density of this sequence is 6165/6272 (Orr, 1969). (End)
LINKS
Richard C. Orr, On the Schnirelmann density of the sequence of k-free integers, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.
FORMULA
{n: A051903(n) <= 5}. [R. J. Mathar, Oct 11 2008, corrected Oct 19 2008]
MAPLE
select(n -> max(seq(f[2], f=ifactors(n)[2]))<=5, [$1..1000]); # Robert Israel, Nov 05 2017
MATHEMATICA
lst={}; Do[a=0; Do[If[FactorInteger[m][[n, 2]]>5, a=1], {n, Length[FactorInteger[m]]}]; If[a!=1, AppendTo[lst, m]], {m, 2*5!}]; lst
Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]] , #1 < 6 & ] &] (* Amiram Eldar, Mar 20 2021 *)
PROG
(Python)
from sympy import mobius, integer_nthroot
def A144972(n):
def f(x): return n+x-sum(mobius(k)*(x//k**6) for k in range(1, integer_nthroot(x, 6)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 05 2024
CROSSREFS
Sequence in context: A130696 A146297 A296876 * A166719 A272159 A227981
KEYWORD
nonn
AUTHOR
STATUS
approved