

A144972


Power6free numbers: numbers whose exponents in their prime factorization are all less than 6.


1



1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Superset of A005117 and A067259. The first numbers not in the sequence are 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 729 etc. [R. J. Mathar, Oct 11 2008]
This sequence has an asymptotic density of about 0.98270.  David A. Corneth, Nov 05 2017
The asymptotic density of this sequence is 1/zeta(6) = 1/A013664 = 945/Pi^6 = 0.9829525922...
The Schnirelmann density of this sequence is 6165/6272 (Orr, 1969). (End)


LINKS



FORMULA



MAPLE

select(n > max(seq(f[2], f=ifactors(n)[2]))<=5, [$1..1000]); # Robert Israel, Nov 05 2017


MATHEMATICA

lst={}; Do[a=0; Do[If[FactorInteger[m][[n, 2]]>5, a=1], {n, Length[FactorInteger[m]]}]; If[a!=1, AppendTo[lst, m]], {m, 2*5!}]; lst
Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]] , #1 < 6 & ] &] (* Amiram Eldar, Mar 20 2021 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



