

A144969


Stirling numbers of second kind S(n,n6).


3



0, 1, 127, 3025, 34105, 246730, 1323652, 5715424, 20912320, 67128490, 193754990, 512060978, 1256328866, 2892439160, 6302524580, 13087462580, 26046574004, 49916988803, 92484925445, 166218969675, 290622864675, 495564056130, 825906183960, 1347860993700
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

6,3


LINKS

T. D. Noe, Table of n, a(n) for n = 6..1000
Index entries for linear recurrences with constant coefficients, signature (13,78,286,715,1287,1716,1716,1287,715,286,78,13,1).


FORMULA

With an offset of 1 the o.g.f. is D^6(x/(1x)), where D is the operator x/(1x)*d/dx. See A008517. For the e.g.f. see A112493.  Peter Bala, Jul 02 2012
G.f.: x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1)/(1x)^13.  Colin Barker, Oct 28 2014


MATHEMATICA

Table[StirlingS2[n, n6], {n, 6, 30}] (* Harvey P. Dale, Sep 21 2011 *)


PROG

(Sage) [stirling_number2(n, n6) for n in range(6, 28)] # Zerinvary Lajos, May 16 2009
(PARI) concat(0, Vec(x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1 )/(1x)^13 + O(x^100))) \\ Colin Barker, Oct 28 2014
(PARI) for(n=6, 50, print1(stirling(n, n6, 2), ", ")) \\ G. C. Greubel, Oct 23 2017


CROSSREFS

Cf. A008517, A112493.
Sequence in context: A321552 A321546 A008398 * A114535 A215611 A176357
Adjacent sequences: A144966 A144967 A144968 * A144970 A144971 A144972


KEYWORD

nonn,easy,changed


AUTHOR

Vladimir Joseph Stephan Orlovsky, Sep 27 2008


STATUS

approved



