login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144969
Stirling numbers of second kind S(n,n-6).
4
0, 1, 127, 3025, 34105, 246730, 1323652, 5715424, 20912320, 67128490, 193754990, 512060978, 1256328866, 2892439160, 6302524580, 13087462580, 26046574004, 49916988803, 92484925445, 166218969675, 290622864675, 495564056130, 825906183960, 1347860993700
OFFSET
6,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
With an offset of 1 the o.g.f. is D^6(x/(1-x)), where D is the operator x/(1-x)*d/dx. See A008517. For the e.g.f. see A112493. - Peter Bala, Jul 02 2012
G.f.: x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1)/(1-x-)^13. - Colin Barker, Oct 28 2014
MATHEMATICA
Table[StirlingS2[n, n-6], {n, 6, 30}] (* Harvey P. Dale, Sep 21 2011 *)
PROG
(Sage) [stirling_number2(n, n-6) for n in range(6, 28)] # Zerinvary Lajos, May 16 2009
(PARI) concat(0, Vec(x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1 )/(1-x)^13 + O(x^100))) \\ Colin Barker, Oct 28 2014
(PARI) for(n=6, 50, print1(stirling(n, n-6, 2), ", ")) \\ G. C. Greubel, Oct 23 2017
CROSSREFS
Sequence in context: A321546 A345458 A008398 * A114535 A215611 A176357
KEYWORD
nonn,easy
AUTHOR
STATUS
approved