OFFSET
6,3
LINKS
T. D. Noe, Table of n, a(n) for n = 6..1000
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
With an offset of 1 the o.g.f. is D^6(x/(1-x)), where D is the operator x/(1-x)*d/dx. See A008517. For the e.g.f. see A112493. - Peter Bala, Jul 02 2012
G.f.: x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1)/(1-x-)^13. - Colin Barker, Oct 28 2014
MATHEMATICA
Table[StirlingS2[n, n-6], {n, 6, 30}] (* Harvey P. Dale, Sep 21 2011 *)
PROG
(Sage) [stirling_number2(n, n-6) for n in range(6, 28)] # Zerinvary Lajos, May 16 2009
(PARI) concat(0, Vec(x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1 )/(1-x)^13 + O(x^100))) \\ Colin Barker, Oct 28 2014
(PARI) for(n=6, 50, print1(stirling(n, n-6, 2), ", ")) \\ G. C. Greubel, Oct 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Sep 27 2008
STATUS
approved