login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Power-6-free numbers: numbers whose exponents in their prime factorization are all less than 6.
1

%I #25 Aug 05 2024 16:04:17

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

%T 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

%U 50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73

%N Power-6-free numbers: numbers whose exponents in their prime factorization are all less than 6.

%C Superset of A005117 and A067259. The first numbers not in the sequence are 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 729 etc. [_R. J. Mathar_, Oct 11 2008]

%C This sequence has an asymptotic density of about 0.98270. - _David A. Corneth_, Nov 05 2017

%C From _Amiram Eldar_, Mar 20 2021: (Start)

%C The asymptotic density of this sequence is 1/zeta(6) = 1/A013664 = 945/Pi^6 = 0.9829525922...

%C The Schnirelmann density of this sequence is 6165/6272 (Orr, 1969). (End)

%H Robert Israel, <a href="/A144972/b144972.txt">Table of n, a(n) for n = 1..10000</a>

%H Richard C. Orr, <a href="https://doi.org/10.1112/jlms/s1-44.1.313">On the Schnirelmann density of the sequence of k-free integers</a>, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.

%F {n: A051903(n) <= 5}. [_R. J. Mathar_, Oct 11 2008, corrected Oct 19 2008]

%p select(n -> max(seq(f[2],f=ifactors(n)[2]))<=5, [$1..1000]); # _Robert Israel_, Nov 05 2017

%t lst={};Do[a=0;Do[If[FactorInteger[m][[n,2]]>5,a=1],{n,Length[FactorInteger[m]]}];If[a!=1,AppendTo[lst,m]],{m,2*5!}];lst

%t Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]] , #1 < 6 & ] &] (* _Amiram Eldar_, Mar 20 2021 *)

%o (Python)

%o from sympy import mobius, integer_nthroot

%o def A144972(n):

%o def f(x): return n+x-sum(mobius(k)*(x//k**6) for k in range(1, integer_nthroot(x,6)[0]+1))

%o m, k = n, f(n)

%o while m != k:

%o m, k = k, f(k)

%o return m # _Chai Wah Wu_, Aug 05 2024

%Y Subsequences: A005117, A004709, A046100, A067259, A051903.

%Y Cf. A013664

%K nonn

%O 1,2

%A _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008