The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272158 Expansion of e.g.f.: (sin(x) + sin(4*x)) / sin(5*x), even-indexed terms only. 7
 1, 4, 116, 8764, 1242356, 283202524, 94690800596, 43653497804284, 26538141745926836, 20569900661155862044, 19799583458238177373076, 23170654021955185224223804, 32397957659053038859810291316, 53342240536065395589518876137564, 102148810140776173440241789042633556, 225108984136852617968906778958292851324, 565646056287498262815832721506444163551796 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..208 FORMULA E.g.f.: cos(3*x/2) / cos(5*x/2). E.g.f.: (cos(x) + cos(4*x)) / (1 + cos(5*x)). E.g.f.: (exp(i*x) + exp(4*i*x)) / (1 + exp(5*i*x)), where i^2 = -1. E.g.f.: exp(i*x)/(1 + exp(5*i*x)) + exp(-i*x)/(1 + exp(-5*i*x)), where i^2 = -1. O.g.f.: 1/(1 - 1*4*x/(1 - 5^2*x/(1 - 6*9*x/(1 - 10^2*x/(1 - ... - (5*n+1)*(5*n+4)*x/(1 - (5*n+5)^2*x/(1 - ...))))))), a continued fraction. a(n) ~ (2*n)! * sqrt(2*(5 - sqrt(5))) * 5^(2*n) / Pi^(2*n+1). - Vaclav Kotesovec, Apr 30 2016 a(n) = (-25)^n*Euler(2*n, 1/5). - Peter Luschny, Nov 26 2020 EXAMPLE E.g.f.: A(x) = 1 + 4*x^2/2! + 116*x^4/4! + 8764*x^6/6! + 1242356*x^8/8! + 283202524*x^10/10! + 94690800596*x^12/12! +... such that A(x) = (sin(x) + sin(4*x)) / sin(5*x). O.g.f.: F(x) = 1 + 4*x + 116*x^2 + 8764*x^3 + 1242356*x^4 + 283202524*x^5 + 94690800596*x^6 + 43653497804284*x^7 + 26538141745926836*x^8 +... such that the o.g.f. can be expressed as the continued fraction: F(x) = 1/(1 - 1*4*x/(1 - 5^2*x/(1 - 6*9*x/(1 - 10^2*x/(1 - 11*14*x/(1 - 15^2*x/(1 - 16*19*x/(1 - 20^2*x/(1 - 21*24*x/(1 - 25^2*x/(1 - 26*29*x/(1 - ...)))))))))))). MAPLE seq((-25)^n*euler(2*n, 1/5), n = 0..16); # Peter Luschny, Nov 26 2020 MATHEMATICA Table[(CoefficientList[Series[(Sin[x] + Sin[4*x]) / Sin[5*x], {x, 0, 40}], x]*Range[0, 40]!)[[2*n + 1]], {n, 0, 20}] (* Vaclav Kotesovec, Apr 30 2016 *) With[{nmax = 60}, CoefficientList[Series[Cos[3*x/2]/Cos[5*x/2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; ;; 2]] (* G. C. Greubel, Oct 11 2018 *) PROG (PARI) {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (sin(X) + sin(4*X))/sin(5*X), 2*n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (cos(X) + cos(4*X))/(1 + cos(5*X)), 2*n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n) = my(A=1, X=x+x*O(x^(2*n+1))); (2*n)! * polcoeff( (exp(I*X) + exp(4*I*X))/(1 + exp(5*I*X)), 2*n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A272467. Sequence in context: A340277 A206689 A198080 * A194535 A030255 A146508 Adjacent sequences: A272155 A272156 A272157 * A272159 A272160 A272161 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 30 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 18:16 EDT 2024. Contains 374899 sequences. (Running on oeis4.)