Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Dec 04 2024 10:34:39
%S 10181,8527,6967,5501,4129,2851,1667,577,-419,-1321,-2129,-2843,-3463,
%T -3989,-4421,-4759,-5003,-5153,-5209,-5171,-5039,-4813,-4493,-4079,
%U -3571,-2969,-2273,-1483,-599,379,1451,2617,3877,5231,6679,8221,9857,11587,13411,15329,17341,19447,21647,31387
%N Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.
%C Terms are listed in the order of their appearance in sequence b.
%C This is a transformed version of the polynomial P(x) = 47*x^2 + 9*x - 5209 whose absolute value gives 43 distinct primes for -24 <= x <= 18, found by G. W. Fung in 1988. - _Hugo Pfoertner_, Dec 13 2019
%D R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
%D Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
%H Vincenzo Librandi, <a href="/A050267/b050267.txt">Table of n, a(n) for n = 1..1000</a>
%H G. W. Fung and H. C. Williams, <a href="https://www.jstor.org/stable/2008810">Quadratic polynomials which have a high density of prime values</a>, Math. Comput. 55(191) (1990), 345-353.
%H Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_012.htm">Problem 12: Prime producing polynomials</a>, The Prime Puzzles & Problems Connection.
%H Jitender Singh, <a href="https://arxiv.org/abs/2411.18366">Prime numbers and factorization of polynomials</a>, arXiv:2411.18366 [math.NT], 2024.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>.
%t lst={};Do[p=47*n^2-1701*n+10181;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 29 2009 *)
%t Select[Table[47n^2-1701n+10181,{n,0,50}],PrimeQ] (* _Harvey P. Dale_, Oct 03 2011 *)
%o (PARI) [n | n <- apply(m->47*m^2-1701*m+10181, [0..100]), isprime(abs(n))] \\ _Charles R Greathouse IV_, Jun 18 2017
%Y Cf. A002383, A005471, A005846, A007635, A022464, A027753, A027755, A027758, A048059, A050267, A050268, A116206, A117081, A267252.
%K sign,less
%O 1,1
%A _Eric W. Weisstein_
%E Edited by _N. J. A. Sloane_, May 10 2007
%E Further edited by _Klaus Brockhaus_, Mar 20 2010
%E More terms (to distinguish from quadratic) from _Charles R Greathouse IV_, Jun 18 2017