login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243410
Primes p such that 1000p-1, 1000p-3, 1000p-7 and 1000p-9 are all prime.
0
10193, 13217, 34457, 36767, 57773, 76631, 103043, 157823, 191033, 194813, 212243, 229799, 242273, 242867, 249377, 256889, 261563, 264071, 361511, 457871, 486293, 502841, 508517, 647837, 653621, 694409, 697511, 777437, 798143, 825611, 847031
OFFSET
1,1
COMMENTS
Primes in A064977.
EXAMPLE
10193 is prime and 1000*10193-1 = 10192999 is prime, 1000*10193-3 = 10192997 is prime, 1000*10193-7 = 10192993 is prime and 1000*10193-9 = 10192991 is prime. Thus 10193 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
from sympy import prime
{print(prime(n), end=', ') for n in range(1, 10**5) if isprime(1000*prime(n)-1) and isprime(1000*prime(n)-3) and isprime(1000*prime(n)-7) and isprime(1000*prime(n)-9)}
(PARI) for(n=1, 10^5, if(ispseudoprime(1000*prime(n)-1) && ispseudoprime(1000*prime(n)-3) && ispseudoprime(1000*prime(n)-7) && ispseudoprime(1000*prime(n)-9), print1(prime(n), ", ")))
CROSSREFS
Sequence in context: A050267 A102326 A216262 * A221119 A105582 A243819
KEYWORD
nonn,less
AUTHOR
Derek Orr, Jun 04 2014
STATUS
approved