Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 06 2014 14:45:15
%S 10193,13217,34457,36767,57773,76631,103043,157823,191033,194813,
%T 212243,229799,242273,242867,249377,256889,261563,264071,361511,
%U 457871,486293,502841,508517,647837,653621,694409,697511,777437,798143,825611,847031
%N Primes p such that 1000p-1, 1000p-3, 1000p-7 and 1000p-9 are all prime.
%C Primes in A064977.
%e 10193 is prime and 1000*10193-1 = 10192999 is prime, 1000*10193-3 = 10192997 is prime, 1000*10193-7 = 10192993 is prime and 1000*10193-9 = 10192991 is prime. Thus 10193 is a member of this sequence.
%o (Python)
%o import sympy
%o from sympy import isprime
%o from sympy import prime
%o {print(prime(n),end=', ') for n in range(1,10**5) if isprime(1000*prime(n)-1) and isprime(1000*prime(n)-3) and isprime(1000*prime(n)-7) and isprime(1000*prime(n)-9)}
%o (PARI) for(n=1,10^5,if(ispseudoprime(1000*prime(n)-1) && ispseudoprime(1000*prime(n)-3) && ispseudoprime(1000*prime(n)-7) && ispseudoprime(1000*prime(n)-9),print1(prime(n),", ")))
%Y Cf. A242562, A064977.
%K nonn,less
%O 1,1
%A _Derek Orr_, Jun 04 2014