The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243409 Primes p such that 100p-1, 100p-3, 100p-7, and 100p-9 are all prime. 1
 2, 797, 1193, 6803, 15773, 28793, 35507, 41579, 53189, 53279, 57347, 60161, 70457, 77549, 81839, 140549, 143387, 150779, 151241, 164447, 170627, 201011, 255083, 285287, 293831, 300317, 316073, 336671, 343661, 449921, 470087, 486947, 488603, 518801, 556289, 569243, 602087 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS K. D. Bajpai, Table of n, a(n) for n = 1..5500 EXAMPLE 2 is prime, 100*2-1 = 199 is prime, 100*2-3 = 197 is prime, 100*2-7 = 193 is prime, and 100*2-9 = 191 is prime. Thus 2 is a member of this sequence. MATHEMATICA Select[Prime[Range[50000]], PrimeQ[100# -1]&&PrimeQ[100# -3]&&PrimeQ[100# -7] &&PrimeQ[100# -9] &] (* K. D. Bajpai, Jun 13 2014 *) Select[Prime[Range[50000]], AllTrue[100#-{1, 3, 7, 9}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 06 2019 *) PROG (Python) import sympy from sympy import isprime from sympy import prime {print(prime(n), end=', ') for n in range(1, 10**5) if isprime(100*prime(n)-1) and isprime(100*prime(n)-3) and isprime(100*prime(n)-7) and isprime(100*prime(n)-9)} (PARI) for(n=1, 10^5, if(ispseudoprime(100*prime(n)-1)&& ispseudoprime(100*prime(n)-3)&& ispseudoprime(100*prime(n)-7)&& ispseudoprime(100*prime(n)-9), print1(prime(n), ", "))) CROSSREFS Cf. A236042, A064976. Sequence in context: A320481 A078169 A226779 * A281195 A109555 A214898 Adjacent sequences: A243406 A243407 A243408 * A243410 A243411 A243412 KEYWORD nonn AUTHOR Derek Orr, Jun 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 03:56 EDT 2024. Contains 373366 sequences. (Running on oeis4.)