login
A236042
Primes p such that 100*p+1, 100*p+3, 100*p+7, and 100*p+9 are all prime.
3
1657, 2437, 6073, 10687, 11677, 13297, 13399, 33289, 35869, 40927, 46093, 57601, 61933, 77743, 97927, 125119, 127447, 130411, 140827, 141397, 189229, 217207, 246439, 271573, 289987, 292867, 292969, 297469, 329803
OFFSET
1,1
EXAMPLE
125119, 12511901, 12511903, 12511907, and 12511909 are all prime, thus 125119 is a member of this sequence.
MATHEMATICA
Select[Prime[Range[30000]], AllTrue[100#+{1, 3, 7, 9}, PrimeQ]&] (* Harvey P. Dale, Mar 05 2023 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**6) if isprime(p) and isprime(100*p+1) and isprime(100*p+3) and isprime(100*p+7) and isprime(100*p+9)}
CROSSREFS
Sequence in context: A251898 A250929 A054809 * A163273 A340923 A104019
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 18 2014
STATUS
approved