login
A236044
Primes p such that p^4 + p + 1 is prime.
3
2, 5, 11, 47, 89, 107, 131, 191, 197, 239, 347, 641, 701, 839, 941, 977, 1049, 1061, 1289, 1709, 1847, 1871, 1949, 1979, 2129, 2789, 2897, 3371, 3557, 3719, 3761, 3917, 4001, 4091, 4211, 4289, 4337, 4397, 4547, 4751
OFFSET
1,1
LINKS
EXAMPLE
941 is prime and 941^4 + 941 + 1 is prime, thus 941 is a member of this sequence.
MATHEMATICA
Select[Prime[Range[700]], PrimeQ[#^4+#+1]&] (* Harvey P. Dale, Sep 27 2014 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**5) if isprime(p) and isprime(p**4+p+1)}
CROSSREFS
Cf. A049408.
Sequence in context: A153989 A160859 A106887 * A285809 A089609 A362525
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 18 2014
STATUS
approved