login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236045
Primes p such that p^1+p+1, p^2+p+1, p^3+p+1, and p^4+p+1 are all prime.
1
2, 5, 131, 2129, 9689, 27809, 36821, 46619, 611729, 746171, 987491, 1121189, 1486451, 2215529, 2701931, 4202171, 4481069, 4846469, 5162141, 5605949, 6931559, 7181039, 8608571, 9276821, 9762611, 11427491, 11447759, 12208019
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[810000]], And@@PrimeQ[Table[#^n+#+1, {n, 4}]]&] (* Harvey P. Dale, Apr 07 2014 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**8) if isprime(p) and isprime(p**1+p+1) and isprime(p**2+p+1) and isprime(p**3+p+1) and isprime(p**4+p+1)}
(PARI) list(maxx)={n=2; cnt=0; while(n<maxx,
if(isprime(2*n+1) && isprime(n^2+n+1) && isprime(n^3+n+1) && isprime(n^4+n+1), cnt++; print(cnt, " ", n ) ); n=nextprime(n+1)); } \\ Bill McEachen, Feb 05 2014
CROSSREFS
Cf. A219117.
Sequence in context: A139129 A139484 A088271 * A183128 A145620 A130412
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 18 2014
STATUS
approved