The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236045 Primes p such that p^1+p+1, p^2+p+1, p^3+p+1, and p^4+p+1 are all prime. 1
 2, 5, 131, 2129, 9689, 27809, 36821, 46619, 611729, 746171, 987491, 1121189, 1486451, 2215529, 2701931, 4202171, 4481069, 4846469, 5162141, 5605949, 6931559, 7181039, 8608571, 9276821, 9762611, 11427491, 11447759, 12208019 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..150 MATHEMATICA Select[Prime[Range[810000]], And@@PrimeQ[Table[#^n+#+1, {n, 4}]]&] (* Harvey P. Dale, Apr 07 2014 *) PROG (Python) import sympy from sympy import isprime {print(p) for p in range(10**8) if isprime(p) and isprime(p**1+p+1) and isprime(p**2+p+1) and isprime(p**3+p+1) and isprime(p**4+p+1)} (PARI) list(maxx)={n=2; cnt=0; while(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 21:44 EDT 2022. Contains 353993 sequences. (Running on oeis4.)