login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183128
G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k-1,k)^(k^2+1)*x^k]*x^n/n ).
1
1, 1, 2, 5, 131, 527019, 384803612051, 118132908813157848449, 7963186263790446068194034181927844, 116876153524994349756813783078174425848129593196964577
OFFSET
0,3
COMMENTS
Conjecture: this sequence consists entirely of integers.
Note that the following g.f. does NOT yield an integer series:
. exp( Sum_{n>=1} [Sum_{k>=0} C(n+k-1,k)^(k^2) * x^k] * x^n/n ).
FORMULA
a(n) = (1/n)*Sum_{k=1..n} L(k)*a(n-k) for n>0 with a(0) = 1, where L(n) = Sum_{k=0..n-1} n*C(n-1,k)^(k^2+1)/(n-k).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 131*x^4 + 527019*x^5 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 503*x^4/4 + 2634426*x^5/5 + 2308818509412*x^6/6 + 826930358998475963946*x^7/7 +...
and equals the sum of the series:
log(A(x)) = (1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 +...)*x
+ (1 + 2^2*x + 3^5*x^2 + 4^10*x^3 + 5^17*x^4 + 6^26*x^5 +...)*x^2/2
+ (1 + 3^2*x + 6^5*x^2 + 10^10*x^3 + 15^17*x^4 + 21^26*x^5 +...)*x^3/3
+ (1 + 4^2*x + 10^5*x^2 + 20^10*x^3 + 35^17*x^4 + 56^26*x^5 +...)*x^4/4
+ (1 + 5^2*x + 15^5*x^2 + 35^10*x^3 + 70^17*x^4 + 126^26*x^5 +...)*x^5/5
+ (1 + 6^2*x + 21^5*x^2 + 56^10*x^3 + 126^17*x^4 + 252^26*x^5 +...)*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(m+k-1, k)^(k^2+1)*x^k)*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, a(n-k)*sum(j=0, k-1, k*binomial(k-1, j)^(j^2+1)/(k-j))))}
CROSSREFS
Sequence in context: A139484 A088271 A236045 * A145620 A130412 A175525
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2010
STATUS
approved