login
A183125
Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [NEUTRAL ; NEUTRAL ; NEUTRAL] pre-colored puzzle.
20
0, 1, 4, 11, 30, 83, 236, 687, 2026, 6027, 18008, 53927, 161654, 484803, 1454212, 4362399, 13086914, 39260411, 117780848, 353342103, 1060025806, 3180076851, 9540229916, 28620689039, 85862066330, 257586198123, 772758593416, 2318275779207, 6954827336486, 20864482008227, 62593446023348, 187780338068607, 563341014204274, 1690023042611163
OFFSET
0,3
COMMENTS
The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [NEUTRAL ; NEUTRAL ; NEUTRAL], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the presented sequence is NOT optimal. The particular "61" algorithm solving the puzzle at hand is not explicitly presented in any of the referenced papers. For the optimal solution of the Magnetic Tower of Hanoi puzzle with the given pre-coloring configuration (the "natural" or "free" Magnetic Tower) see A183117 and A183118. Optimal solutions are discussed and their optimality is proved in link 2 listed below.
Large N limit of the sequence is 0.5*(197/324)*3^N ~ 0.5*0.61*3^N. Series designation: S61(n).
REFERENCES
Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
LINKS
Uri Levy, The Magnetic Tower of Hanoi, arxiv:1003.0225 [math.CO], 2010.
Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
Uri Levy, to play The Magnetic Tower of Hanoi, web applet [Broken link]
FORMULA
G.f.: (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1).
a(n) = +5*a(n-1)-6*a(n-2)-2*a(n-3)+7*a(n-4)-3*a(n-5).
(a(n) = S61(n) as in referenced paper):
a(n) = 3*a(n-1) - 2*n^2 + 17*n - 43 ; n even ; n >= 6.
a(n) = 3*a(n-1) - 2*n^2 + 17*n - 42 ; n odd ; n >= 5.
a(n) = S64(n-1) + S64(n-2) + S75(n-3) + 4*3^(n-3) + 2 ; n >= 3.
S64(n) and S75(n) refer to the integer sequences described by A183121 and A183119 respectively.
a(n) = 0.5*(197/324)*3^n + n^2 - 5.5*n + 91/8; n even; n >= 4.
a(n) = 0.5*(197/324)*3^n + n^2 - 5.5*n + 93/8; n odd; n >= 5.
MAPLE
seq(coeff(series((-4*x^8-2*x^6+x^4-3*x^3-x^2+x)/(3*x^5-7*x^4+2*x^3+6*x^2-5*x+1), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
MATHEMATICA
Join[{0, 1, 4, 11}, LinearRecurrence[{5, -6, -2, 7, -3}, {30, 83, 236, 687, 2026}, 30]] (* Jean-François Alcover, Dec 04 2018 *)
CoefficientList[Series[(- 4 x^8 - 2 x^6 + x^4 - 3 x^3 - x^2 + x) / (3 x^5 - 7 x^4 + 2 x^3 + 6 x^2 - 5 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
PROG
(Magma) I:=[0, 1, 4, 11, 30, 83, 236, 687, 2026]; [n le 9 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
(PARI) my(x='x+O('x^30)); concat([0], Vec((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))) \\ G. C. Greubel, Dec 04 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( (-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1))); // G. C. Greubel, Dec 04 2018
(Sage) s=((-4*x^8 -2*x^6 +x^4 -3*x^3 -x^2 +x)/(3*x^5 -7*x^4 +2*x^3 +6*x^2 -5*x +1)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
(GAP) a:=[30, 83, 236, 687, 2026];; for n in [6..30] do a[n]:=5*a[n-1]-6*a[n-2] -2*a[n-3]+7*a[n-4]-3*a[n-5]; od; Concatenation([0, 1, 4, 11], a); # G. C. Greubel, Dec 04 2018
CROSSREFS
A183123 is an integer sequence generated by another non-optimal algorithm solving the "free" [NEUTRAL ; NEUTRAL ; NEUTRAL] Magnetic Tower of Hanoi puzzle.
A003462 "Partial sums of A000244" is the sequence (also) describing the total number of moves solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle.
Sequence in context: A078141 A090327 A183118 * A183123 A183116 A183121
KEYWORD
nonn,easy
AUTHOR
Uri Levy, Jan 08 2011
EXTENSIONS
More terms from Jean-François Alcover, Dec 04 2018
STATUS
approved