login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251898
Number of (n+2)X(1+2) 0..3 arrays with every 3X3 subblock row and column sum unequal to 4 or 5 and every diagonal and antidiagonal sum equal to 4 or 5
1
1652, 2596, 3312, 5264, 9208, 16532, 23868, 39884, 71752, 133166, 215372, 385436, 645120, 1175522, 1992664, 3630592, 6053132, 11027640, 18589076, 33876216, 57036688, 104047908, 174874732, 318791492, 537411108, 979946108, 1650420932
OFFSET
1,1
COMMENTS
Column 1 of A251905
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +2*a(n-3) +9*a(n-4) -10*a(n-5) -a(n-6) -36*a(n-7) -33*a(n-8) +10*a(n-9) +9*a(n-10) +153*a(n-11) +118*a(n-12) +103*a(n-13) -44*a(n-14) -277*a(n-15) -339*a(n-16) -323*a(n-17) -38*a(n-18) +308*a(n-19) +458*a(n-20) +453*a(n-21) +179*a(n-22) -164*a(n-23) -310*a(n-24) -306*a(n-25) -144*a(n-26) +4*a(n-27) +74*a(n-28) +92*a(n-29) +40*a(n-30) +10*a(n-31) +18*a(n-32) -12*a(n-34) -4*a(n-35) for n>45
EXAMPLE
Some solutions for n=4
..2..2..2....1..1..1....2..2..2....0..0..1....3..3..3....2..2..3....3..3..1
..1..0..1....2..3..2....1..0..1....0..3..0....1..0..2....1..2..0....2..2..2
..3..0..3....0..2..0....3..0..3....1..3..2....2..3..1....0..3..0....1..2..0
..3..0..3....0..3..0....3..0..3....2..3..1....0..3..0....1..2..0....0..3..0
..1..0..2....2..3..2....2..0..1....0..2..0....0..3..0....2..1..3....2..3..1
..2..3..2....1..1..1....1..0..2....1..2..0....1..0..2....3..3..3....1..1..1
CROSSREFS
Sequence in context: A154075 A251897 A251905 * A250929 A054809 A236042
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 10 2014
STATUS
approved