login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054809
Second term of strong prime 5-tuples: p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2).
3
1657, 1777, 1847, 1861, 1987, 2371, 2459, 2503, 2521, 3433, 3449, 4201, 4507, 5261, 5407, 5431, 6029, 6637, 7229, 7283, 7741, 7867, 7919, 8147, 8501, 9587, 9601, 11027, 11369, 11579, 11821, 12391, 13859, 14813, 15121, 15527, 16033, 16301
OFFSET
1,1
COMMENTS
Initial member of pairs of consecutive primes in A054805 (second of quadruples): The first 10^4 terms of that sequence yield over 2000 terms of this sequence. - M. F. Hasler, Oct 27 2018
LINKS
FORMULA
a(n) = nextprime(A054808(n)) = prevprime(A054810(n)), nextprime = A151800, prevprime = A151799; A054809 = {m = A054805(n) | nextprime(m) = A054805(n+1)}. - M. F. Hasler, Oct 27 2018
MATHEMATICA
spqQ[n_]:=Module[{difs=Differences[n]}, difs[[1]]>difs[[2]]> difs[[3]]> difs[[4]]]; Transpose[Select[Partition[Prime[ Range[2000]], 5, 1], spqQ]][[2]] (* Harvey P. Dale, May 06 2012 *)
CROSSREFS
Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quadruples (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime 4-tuples, 5-tuples, 6-tuples; A054819 .. A054840: members of weak prime 4-tuples, ..., 7-tuples.
Sequence in context: A251905 A251898 A250929 * A236042 A163273 A340923
KEYWORD
nonn
AUTHOR
Henry Bottomley, Apr 10 2000
EXTENSIONS
Corrected by Harvey P. Dale, May 06 2012
Edited and offset corrected to 1 by M. F. Hasler, Oct 27 2018
STATUS
approved