login
A281195
Numbers m such that gcd(s1,s2) = number of the Collatz iterations of m where s1 is the sum of the odd terms and s2 the sum of the even terms in the Collatz trajectory.
0
2, 808, 4801, 10408, 14661, 25072, 34338, 39328, 40384, 45902, 62627, 78547, 79134, 108674, 113264, 113474, 125310, 125344, 144172, 152949, 158979, 159382, 173034, 176778, 209202, 219920, 226565, 230090, 231350, 232207, 243482, 248389, 291200, 300364, 309406
OFFSET
1,1
COMMENTS
Or numbers m such that A277068(m) = A006577(m).
The corresponding values of gcd(s1,s2) are given by the sequence {b(n)} = {1, 28, 121, 29, 45, 64, 80, 44, 44, 70, 86, 138, 76, 40, 105, 105, 180, 56, 43, 82, 170, 46, 72, 72, 111, 36, 62, 36, 137, 62, 36, 62, 26, 88, 78, 78, ...}
We observe pairs (b(n), b(n)) with b(n): 44, 105, 72, 78, 68, 146, 35, 74, 61, 74, 87, 77, 90, 38, 44, ...
We observe triples (b(n), b(n), b(n)) with b(n): 78, 35, 77, 80, 106, ...
We observe quadruples (b(n), b(n), b(n), b(n)) with b(n): 35, 70, ...
EXAMPLE
808 is in the sequence because the Collatz trajectory is given by the 28 terms of the set {808 404 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1}. The sum of the even terms is 2408, the sum of the odd terms is 196 and gcd(2408,196) = 28.
Or A277068(808) = A006577(808) = 28.
MATHEMATICA
g[n_]:=Module[{a=n, k=0}, While[a!=1, k++; If[EvenQ[a], a=a/2, a=a*3+1]]; k]; Array[g, 10^4]; Collatz[n_]:=NestWhileList[If[OddQ[#], 3#+1, #/2]&, n, #>1&]; f[n_]:=Block[{c=Collatz@n}, GCD[Plus@@Select[c, OddQ], Plus@@Select[c, EvenQ]]]; Array[f, 10^4]; Do[If[g[m]==f[m], Print[m]], {m, 1, 3*10^5}]
CROSSREFS
Sequence in context: A226779 A375844 A243409 * A109555 A214898 A332182
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 17 2017
STATUS
approved