login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243408
Primes p such that 10p-1, 10p-3, 10p-7 and 10p-9 are all prime.
1
2, 11, 83, 149, 347, 1301, 1607, 2531, 6299, 7727, 8273, 17117, 20183, 21737, 24371, 26669, 39227, 40277, 53951, 54917, 63347, 66359, 66467, 73637, 82217, 82373, 101537, 102251, 106397, 106871, 117203, 132971, 134033, 135221, 140237, 144701, 146141, 151433, 152597
OFFSET
1,1
COMMENTS
This is a subsequence of A064975.
LINKS
EXAMPLE
2 is prime, 10*2-1 = 19 is prime, 10*2-3 = 17 is prime, 10*2-7 = 13 is prime, 10*2-9 = 11 is prime. Thus 2 is a member of this sequence.
MATHEMATICA
Select[ Range@ 153000], PrimeQ[#] && PrimeQ[10#-1] && PrimeQ[10#-3] && PrimeQ[10#-7] && PrimeQ[10#-9] &] (* Robert G. Wilson v, Jun 06 2014 *)
Select[Prime[Range[15000]], AllTrue[10#-{1, 3, 7, 9}, PrimeQ]&] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(Python)
import sympy
from sympy import isprime
from sympy import prime
{print(prime(n), end=', ') for n in range(1, 10**5) if isprime(10*prime(n)-1) and isprime(10*prime(n)-3) and isprime(10*prime(n)-7) and isprime(10*prime(n)-9)}
(PARI) for(n=1, 10^5, if(ispseudoprime(10*prime(n)-1) && ispseudoprime(10*prime(n)-3) && ispseudoprime(10*prime(n)-7) && ispseudoprime(10*prime(n)-9), print1(prime(n), ", ")))
CROSSREFS
Sequence in context: A378954 A293574 A322644 * A352655 A104086 A143140
KEYWORD
nonn
AUTHOR
Derek Orr, Jun 04 2014
STATUS
approved