login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243412
Number of Dyck paths of semilength n avoiding the consecutive steps UDUUDU (with U=(1,1), D=(1,-1)).
4
1, 1, 2, 5, 13, 37, 112, 352, 1136, 3742, 12529, 42513, 145868, 505234, 1764157, 6203370, 21947490, 78072209, 279062937, 1001803617, 3610366030, 13057141261, 47373444827, 172381857939, 628944880851, 2300410562946, 8433110899963, 30980398420830, 114034887644860
OFFSET
0,3
LINKS
FORMULA
Recurrence: (n+1)*(n+2)*(817*n^7 - 24387*n^6 + 285094*n^5 - 1647261*n^4 + 4787137*n^3 - 5628540*n^2 - 1552284*n + 6122952)*a(n) = (n+1)*(1634*n^8 - 47957*n^7 + 542786*n^6 - 2900786*n^5 + 6449435*n^4 + 3292426*n^3 - 41693904*n^2 + 63681552*n - 24491808)*a(n-1) + 3*n*(2451*n^8 - 73161*n^7 + 850153*n^6 - 4796076*n^5 + 12712261*n^4 - 7403931*n^3 - 33886709*n^2 + 64848252*n - 30495792)*a(n-2) - (8170*n^9 - 256125*n^8 + 3222045*n^7 - 20734872*n^6 + 70290303*n^5 - 101053185*n^4 - 62925628*n^3 + 384515340*n^2 - 387509328*n + 86320944)*a(n-3) + 3*(4085*n^9 - 134190*n^8 + 1787518*n^7 - 12351340*n^6 + 46074358*n^5 - 78991732*n^4 - 20763151*n^3 + 311152124*n^2 - 443676900*n + 188645328)*a(n-4) - (8170*n^9 - 280635*n^8 + 3929664*n^7 - 28666521*n^6 + 113672493*n^5 - 215520840*n^4 + 17606573*n^3 + 648300408*n^2 - 951192216*n + 363243312)*a(n-5) + 2*(4085*n^9 - 146445*n^8 + 2159949*n^7 - 16771674*n^6 + 71463813*n^5 - 145058547*n^4 - 9273941*n^3 + 640553178*n^2 - 1114925472*n + 598040712)*a(n-6) + (8170*n^9 - 305145*n^8 + 4669113*n^7 - 37343346*n^6 + 161916525*n^5 - 325736907*n^4 - 55373986*n^3 + 1484026824*n^2 - 2345628420*n + 1080273456)*a(n-7) + (6536*n^9 - 253920*n^8 + 4039503*n^7 - 33528057*n^6 + 150519924*n^5 - 315037869*n^4 - 26105741*n^3 + 1400728128*n^2 - 2351058696*n + 1235710944)*a(n-8) + (n-9)*(6536*n^8 - 204900*n^7 + 2511339*n^6 - 14959584*n^5 + 41778954*n^4 - 25451829*n^3 - 129319352*n^2 + 282520572*n - 168563664)*a(n-9) + 3*(n-10)*(n-9)*(817*n^7 - 18668*n^6 + 155929*n^5 - 559001*n^4 + 589888*n^3 + 1351597*n^2 - 3752130*n + 2343528)*a(n-10). - Vaclav Kotesovec, Jun 05 2014
a(n) ~ c * d^n / n^(3/2), where d = 3.8821590268628506747194368909643384060073824... is the root of the equation d^8 - 2*d^7 - 10*d^6 + 12*d^5 - 5*d^4 - 2*d^3 - 5*d^2 - 8*d - 3 = 0, and c = 0.56162811676670317653498040062091920282038218... . - Vaclav Kotesovec, Jun 05 2014
CROSSREFS
Column k=0 of A243366.
Column k=45 of A243753.
Sequence in context: A263529 A053732 A216617 * A170941 A119495 A148301
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 04 2014
STATUS
approved